Biological activities of protocorms and stems extracts of Dendrobium transparens
الموضوعات :Pusp Raj Joshi 1 , Bir Bahadur Thapa 2 , Krishna Chand 3 , Lasta Maharjan 4 , Mukti Ram Paudel 5 , Basant Pant 6 , Bijaya Pant 7
1 - Central Department of Botany, Tribhuvan University, Kirtipur 44613, Kathmandu, Nepal
2 - Central Department of Botany, Tribhuvan University, Kirtipur 44613, Kathmandu, Nepal
3 - Annapurna Research Center, Tanka Prasad Ghumti Sadak 44600, Kathmandu, Nepal
4 - Annapurna Research Center, Tanka Prasad Ghumti Sadak 44600, Kathmandu, Nepal
5 - Central Department of Botany, Tribhuvan University, Kirtipur 44613, Kathmandu, Nepal
6 - Annapurna Research Center, Tanka Prasad Ghumti Sadak 44600, Kathmandu, Nepal
7 - Central Department of Botany, Tribhuvan University
الکلمات المفتاحية: Antibacterial activity, Antioxidant activity, Dendrobium transparens, MTT, Protocorms, Total flavonoid content (TFC), Total phenolic content (TPC),
ملخص المقالة :
This study assessed the phenolic and flavonoid contents, and antioxidant, antibacterial, as well as cytotoxic properties of the protocorm extract of Dendrobium transparens and compared it to its wild equivalents. Methanol was used to extract compounds from the stems (DTSE) and protocorms (DTPE). DTSE contained 61.889 mg QE and 82.00 mg GAE per gram of quercetin and gallic acid, respectively. At a concentration of 191.23 μg/mL, DTSE exhibited a 50% DPPH radical scavenging efficiency. Compared to the 3T3 cell line (2108.87 μg/mL), the DTPE's cytotoxic ability against the HeLa (229.30 μg/mL) and U251 (213.90 μg/mL) cell lines was found to be significantly stronger. However, the U251 cell line was strongly cytotoxic to DTSE (75.84 μg/mL). At a dose of 2000 mg/kg, neither DTSE nor DTPE caused any discernible harm in mice. They could inhibit the growth of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Based upon the experimental results, the wild stems and protocorms were found to be alternatives suitable for creating pharmacologically bioactive substances.
Babili, F.E., Nigon, C., Lacaze, L., Millé, J., Masiala, A., Simm, J., Lamade, V.M., El Haj, A.A., 2022. A new colorimetric DPPH radical scavenging activity method: Comparison with spectrophotometric assay in some medicinal plants used in Moroccan Pharmacopoeia. Pharma. Fronts. 4, e89-e102.
Bourgaud, F., Gravot, A., Milesi, S., Gontier, E., 2001. Production of plant secondary metabolites: A historical perspective. Plant Sci. 161(5), 839-851.
Cardoso, J.C., Oliveira, M.E., Cardoso, F.D.C., 2019. Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Horticult. Brasil. 37, 124-132.
Cui, H.Y., Murthy, H.N., Moh, S.H., Cui, Y.Y., Paek, K.Y., 2015. Establishment of protocorm suspension cultures of Dendrobium candidum for the production of bioactive compounds. Horticult. Environ. Biotechnol. 56(1), 114-122.
eFloras, 2020. Dendrobium transparens Wall. Ex Lindl. http://www.efloras.org/florataxon.aspx?flora_id=110&taxon_id=242421917. Accessed: 12 Dec 2021
El Jabboury, Z., Bentaib, R., Stevanovic, Z.D., Ousaaid, D., Benjelloun, M., El Ghadraoui, L., 2023. Ammi visnaga (L.) Lam.: An overview of phytochemistry and biological functionalities. Trends Phytochem. Res. 7(3), 141-155.
Espinosa-Leal, C.A., Puente-Garza, C.A., García-Lara, S., 2018. In vitro plant tissue culture: Means for production of biological active compounds. Planta 248(1), 1-18.
Gali-Muhtasib, H., Hmadi, R., Kareh, M., Tohme, R., Darwiche, N., 2015. Cell death mechanisms of plant-derived anticancer drugs: Beyond apoptosis. Apoptosis 20(12), 1531-1562.
Gutierrez, R.M.P., 2010. Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. J. Med. Plants Res. 4(8), 592-638.
Hapuarachchi, S.D., Suresh, T.S., Hadunnetthi, S., Senarath, W.T.P.S.K., Ranasinghe, C., 2022. Anti-inflammatory potential of aqueous extract and ethyl acetate fractions of Munronia pinnata (Wall) Theob. and the isolated compound, senecrassidiol. Trends Phytochem. Res. 6(3), 247-258.
Hussain, M.S., Fareed, S., Saba-Ansari, M., Rahman, A., Ahmad, I.Z., Saeed, M., 2012. Current approaches toward production of secondary plant metabolites. J. Pharm. Bioall. Sci. 4(1), 10.
Isah, T., Umar, S., Mujib, A., Sharma, M.P., Rajasekharan, P.E., Zafar, N., Frukh, A., 2018. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: Strategies, approaches, and limitations to achieving higher yield. Plant Cell Tiss. Organ Cult. 132(2), 239-265.
Joshi, P.R., Paudel, M.R., Chand, M.B., Pradhan, S., Pant, K.K., Joshi, G.P., Bohara, M., Wagner, S.H., Pant, B. Pant, B., 2020. Cytotoxic effect of selected wild orchids on two different human cancer cell lines. Heliyon 6(5), e03991.
Kota, S., Dumpala, P., Sajja, R., Anantha, R., 2023. Phytoconstituents of Chromolaena odorata (L.) leaf extract for the synthesis of copper oxide/copper nanoparticles and evaluation of their biological potential in wound healing. Trends Phytochem. Res. 7(3), 186-206.
Mohammadhosseini, M., Frezza, C., Venditti, A., Akbarzadeh, A., 2019. Ethnobotany and phytochemistry of the genus Eremostachys Bunge. Curr. Org. Chem. 23, 1828-1842.
Mohammadhosseini, M., Frezza, C., Venditti, A., Sarker, S., 2021. A systematic review on phytochemistry, ethnobotany and biological activities of the genus Bunium L. Chem. Biodivers. 18(11), e2100317.
Ochoa-Villarreal, M., Howat, S., Hong, S., Jang, M.O., Jin, Y.W., Lee, E.K. Loake, G.J., 2016. Plant cell culture strategies for the production of natural products. BMB Rep. 49(3), 149.
OECD, O., 2008. Guideline 425: Acute Oral Toxicity—Up-and-Down Procedure. OECD Guidelines for the Testing of Chemicals, 2. OECD 425.
Otero, J.T., Ackerman, J.D. Bayman, P., 2002. Diversity and host specificity of endophytic Rhizoctonia‐like fungi from tropical orchids. American J. Bot. 89(11), 1852-1858.
Pant, B., 2013. Medicinal orchids and their uses: Tissue culture a potential alternative for conservation. African J. Plant Sci. 7(10), 448-467.
Pant, B., 2014. Application of Plant Cell and Tissue Culture for the Production of Phytochemicals in Medicinal plants. In “Infectious Diseases and Nanomedicine II .” Cham: Springer, pp. 25-39.
Pant, B., Chand, K., Paudel, M.R., Joshi, P.R., Thapa, B.B., Park, S.Y., Shakya, S., Thakuri, L.S., Rajbahak, S., Sah, A.K. Baniya, M.K., 2022. Micropropagation, antioxidant and anticancer activity of pineapple orchid: Dendrobium densiflorum Lindl. J. Plant Biochem. Biotechnol. 31, 399-409.
Pant, B., Joshi, P.R., Maharjan, S., Thakuri, L.S., Pradhan, S., Shah, S., Wagner, S.H. Pant, B., 2021. Comparative cytotoxic activity of wild harvested stems and in vitro-raised protocorms of Dendrobium chryseum Rolfe in human cervical carcinoma and glioblastoma cell lines. Adv. Pharmacol. Pharma. Sci. 2021, 8839728.
Pant, B., Shah, S., Shrestha, R., Pandey, S. Joshi, P.R., 2017. An Overview on Orchid Endophytes. In “Mycorrhiza-nutrient Uptake, Biocontrol, Ecorestoration.” Cham: Springer, pp. 503-524.
Pariyani, R., Safinar Ismail, I., Azam, A.A., Abas, F., Shaari, K. Sulaiman, M.R., 2015. Phytochemical screening and acute oral toxicity study of Java tea leaf extracts. BioMed Res. Int. 2015(1), 742420.
Park, S.Y., Ho, T.T. Paek, K.Y., 2020. Medicinal orchids: Production of Bioactive Compounds and Biomass. In “Orchid Biology: Recent Trends & Challenges.” Singapore: Springer, pp. 439-450.
Park, S.Y., Murthy, H.N. Paek, K.Y., 2000. In-vitro seed germination of Calanthe sieboldii, an endangered orchid species. J. Plant Bio. 43, 158-161.
Paudel, M.R., Chand, M.B., Pant, B. Pant, B., 2017. Cytotoxic activity of antioxidant-riched Dendrobium longicornu. Pharmacog. J. 9(4), 499-503.
Paudel, M.R., Chand, M.B., Pant, B. Pant, B., 2018. Antioxidant and cytotoxic activities of Dendrobium moniliforme extracts and the detection of related compounds by GC-MS. BMC Comp. Alt. Med. 18, 134.
Paudel, M.R., Chand, M.B., Pant, B. Pant, B., 2019. Assessment of antioxidant and cytotoxic activities of extracts of Dendrobium crepidatum. Biomolecules 9(9), 478.
Paudel, M.R., Joshi, P.R., Chand, K., Sah, A.K., Acharya, S., Pant, B. Pant, B., 2020. Antioxidant, anticancer and antimicrobial effects of in vitro developed protocorms of Dendrobium longicornu. Biotechnol. Rep. 28, e00527.
Pfab, M.F. Scholes, M.A., 2004. Is the collection of Aloe peglerae from the wild sustainable? An evaluation using stochastic population modelling. Biol. Conser. 118(5), 695-701.
Pham-Huy, L.A., He, H. Pham-Huy, C., 2008. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 4(2), 89.
Roleira, F.M., Tavares-da-Silva, E.J., Varela, C.L., Costa, S.C., Silva, T., Garrido, J. Borges, F., 2015. Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chem. 183, 235-258.
Saleem, U., Ahmad, B., Ahmad, M., Erum, A., Hussain, K., Irfan Bukhari, N., 2016. Is folklore use of Euphorbia helioscopia devoid of toxic effects? Drug Chem. Toxicol. 39(2), 233-237.
Sayin, V.I., Ibrahim, M.X., Larsson, E., Nilsson, J.A., Lindahl, P. Bergo, M.O., 2014. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med. 6(221), 221ra15.
Thapa, B.B., Thakuri, L.S., Joshi, P.R., Chand, K., Rajbahak, S., Sah, A.K., Shrestha, R., Paudel, M.R., Park, S.Y., Pant, B., 2020. Ex-situ conservation and cytotoxic activity assessment of native medicinal orchid: Coelogyne stricta. J. Plant Biotechnol. 47(4), 330-336.
Vanisree, M., Lee, C.Y., Lo, S.F., Nalawade, S.M., Lin, C.Y. Tsay, H.S., 2004. Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot. Bull. Acad. Sin. 45(1), 1-22.
Walum, E., Nilsson, M., Clemedson, C. Ekwall, B., 1995. The MEIC program and its implications for the prediction of acute human systemic toxicity. Alt. Meth. Toxicol. 11, 275-282.
Yeung, E.C., 2017. A perspective on orchid seed and protocorm development. Bot. Stud. 58(1), 33.
Zha, X.Q., Luo, J.P., Jiang, S.T. Wang, J.H., 2007. Enhancement of polysaccharide production in suspension cultures of protocorm-like bodies from Dendrobium huoshanense by optimization of medium compositions and feeding of sucrose. Process Biochem. 42(3), 344-351.