طراحی مدل سودآوری کلی زنجیره تامین در شرایط عدم¬قطعیت با رویکرد مدل¬سازی ساختاری تفسیری (ISM)
الموضوعات :فریدون لطف الهی 1 , یعقوب علوی متین 2 , سحر خوش فطرت 3 , محمد پاسبان 4 , علیرضا بافنده زنده 5
1 - دانشجوی دکتری، گروه مدیریت صنعتی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
2 - دانشیار گروه مدیریت صنعتی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
3 - استادیار، گروه ریاضی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
4 - استادیار گروه مدیریت صنعتی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
5 - دانشیار گروه مدیریت صنعتی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
الکلمات المفتاحية: سودآوری کلی زنجیره تامین, عدم قطعیت, مدل سازی ساختاری- تفسیری (ISM), غربالگری فازی,
ملخص المقالة :
زمینه: سودآوری کلی در زنجیره تامین یکی از اساسی ترین موارد مربوط به پایداری زنجیره تامین محسوب می شود. هدف: در این پژوهش شناسایی عوامل تاثیر گذار بر سودآوری کلی زنجیره تامین در شرایط عدم قطعیت و طراحی مدل ساختاری-تفسیری عوامل موثر بر سودآوری انجام شده است. روش: فرآیند انجام این پژوهش در سه مرحله صورت گرفنه است. 1- فاز شناسایی معیارها : در این مرحله ابتدا مطالعات کتابخانه ای انجام شد. با مطالعه ادبیات نظری و پیشینه تحقیق، متغیرهای تحقیق در 62 مورد شناسایی گردید. 2- فاز غربال متغیرها : در این مرحله ابتدا از طریق مصاحبه با خبرگان و کارشناسان، متغیرهای مهم و تاثیرگذار باغربالگری فازی انتخاب شدند. 3- در مرحله سوم مدل ساختاری تفسیری (ISM) طراحی شد. پرسشنامه مدل سازی ساختاری تفسیری توسط خبرگان سازمان تکمیل گردید. سپس با استفاده از تکنیک روش MICMAC مذل طراحی شده تجزیه و تحلیل و مورد تائید قرار گرفت. یافته ها: از 62 متغیر تاثیر گذار بر سودآوری زنجیره تامین 39 عامل توسط خبرگان انتخاب شدند. با استفاده از غربالگری فازی اهمیت 27 متغیر تاثیرگذار مشخص و متغیرهای نهایی وارد مدل شدند. پرسشنامه تحقیق، توسط 15 نفر از خبرگان صنعت خودرو تکمیل و مدل ساختاری –تفسیری (ISM) سودآوری کلی زنجیره تامین در شرایط عدم قطعیت، با 27 متغیر طراحی گردید. نتیجه گیری: مدل ساختاری تفسیری سودآوری کلی زنجیره تامین در شرایط عدم قطعیت طراحی گردید. نوع و روابط متغیرها تعیین شده و نقش هر یک از متغیرها در مدل طراحی شده مشخص گردید
Ainevand, Servanaz and Gholamian, Mohammadreza (2019). Presenting the location-inventory model of blood products (platelets) in the blood supply chain based on the EOQ ordering system. Industrial #Management, 91(4), 901-999. (In Persian) Alem Tabriz, Akbar (1392).New approaches in production management, Commercial Center publications, first edition (In Persian)# Azar, Adel, Faraji, Hojjat. (1389). Science of Fuzzy Management, Tehran: Mehraban Publishing House. (In Persian)# Abeysekara, N, Wang, H, Kuruppuarachchi, D., 2019. Effect of supply-chain resilience on firm performance and competitive advantage: A study of the Sri Lankan apparel industry. Business Process Management Journal 25, 1673–1695# Azizian, M.; Sepehri, M.M, Rastegar, M.A. A Convex Dynamic Approach for Globally Optimal Profitin Supply Chains. Mathematics 2022, 10, 498. https://doi.org/10.3390/# Azizi, Amir and Mohajeri, Majid (1401). Evaluation and ranking model of automotive parts supply chain risks using fuzzy mental map and interpretive structural modeling. Industrial Management Studies, 20th year, No. 67, 121-158. (In Persian)# Cui, L., Jin, Z., Li, Y. & Wang, Y. (2022). Effects of control mechanisms on supply chain resilience and sustainability performance. Australian Journal of Management, doi.org/10.1177/03128962211066532 (In press).# Daniel Arturo Olivares Vera,1 Elias Olivares-Benitez ,2 Eleazar Puente Rivera,3 Mónica López-Campos ,4 and Pablo A. Miranda(2018), Combined Use of Mathematical Optimization and Design of Experiments for
the Maximization of Profit in a Four-Echelon Supply Chain, Hindawi Complexity Volume 2018, Article ID 8731027, 25 pages https://doi.org/10.1155/2018/8731027# Dmitry Ivanov (2018), Disruption tails and revival policies: A simulation analysis of supply chain design and production-ordering systems in the recovery and post-disruption periods, Computers & Industrial Engineering, https://doi.org/10.1016/j.cie.2018.10.043# Ekhtiari, M., Zandieh, M., Alem Tabriz, A. & Rabieh, M. (2019). Proposing a Bi-level Programming Model for Multi-echelon Supply Chain with an Emphasis on Reliability in Uncertainty. Industrial Management Journal, 11(2), 177-206. (In Persian)# Esmailzadeh, Mohammad and Ramadanian, Mohammad (2014). Identifying and prioritizing criteria to evaluate service supply chain performance. Industrial Management, 7(1), 151-174. (In Persian)# Faizabadi, Javad and Akbari Jokar, Mohammad Reza and Karimi Dastjard, Dawood (2008). Development and explanation of a configuration for classifying supply chains using a resource-based approach in the automotive industry. Industrial Management, 1 (2), 121-138. (In Persian)# Faleh Lajimi, Hamidreza; Jafari Seroni, Zahra and Hosseini Dolatabad, Asana (2019). Mathematical model design for optimization of integrated supply chain network at strategic and tactical levels. Industrial Management, 91(4), 555-545. (In Persian)# Fazli-Khalaf, M., Mirzazadeh, A., Pishvaee, M.S., 2017. A robust fuzzy stochastic programming model for the design of a reliable green closed-loop supply chain network. Human and Ecological Risk Assessment: An International Journal 23, 2119–2149.# Federico, G.T.B., Alex, D., Magdalena, M.G.T., 2020. Can Greater Levels of Cooperation Help to Improve Productivity and Resilience in UK Agriculture Post Brexit Drawing Comparisons with the New Zealand Dairy Industry Experience? International Journal of Academic Research in Business and Social Sciences 10, 535–555.# Frank, Mac.D, Janatan, Hill & Shiler, Tomas (2018). Cost efficiency in Organization, Journal of Productivity Analysis, 21(2),153-172.# Fu R, Qiang Q, Ke K, Huang Z (2021) Closed-loop supply chain network with interaction of forward and reverse logistics. Sustainable Production and Consumption 27:737–752# Gan Wan, and Jun Zhang (2021), Optimizing Channel Profit in a Retail Dual-channel Supply Chain When Considering Delivery Lead Time, IOP Publishing doi: 10.1088/1742-6596/1910/1/012022# Golpîra, H. (2017). Robust bi-level optimization for an opportunistic supply chain network design problem in an uncertain and risky environment. Operations Research and Decisions, 27, 21-41.# Gorji M-A, Jamali M-B, Iranpoor M (2021). A game-theoretic approach for decision analysis in end-of-life vehicle reverse supply chain regarding government subsidy. Waste Manage 120:734–74# Habibi-Kouchaksaraei, M., Paydar, M., & Asadi-Gangraj, E. (2018). Designing a bi-objective multi-echelon robust blood supply chain in a disaster. Applied Mathematical Modelling, 55, 583-599.# Irina Berezinets, Margarita Meshkova, Natalia Nikol(2022), The Problem of Supply Chain Pro_t Maximization Using Sales Rebate Contra T, Contributions to Game Theory, XII, 70_99 henko# Ivanov, D, Hosaini. (2017). Simulation-based ripple effect modelling in the supply chain. International Journal of Production Research, 55(7), 2083–2101. https://doi.org/10.1080/00207 543.2016.12758 73# Kannan Govindan a, Mohammad Fattahi b (2017), Supply chain network: A comprehensive review and future research directions, European Journal of Operational Research 263 (2017) 108–141# Kangogo, D., Dentoni, D., Bijman, J., 2020. Determinants of farm resilience to climate change: The role of farmer entrepreneurship and value chain collaborations. Sustainability (Switzerland) 12# Katsaliaki1 · P. Galetsi1 · S. Kumar (2020), Supply chain disruptions and resilience: a major review and future research agenda, Annals of Operations Research https://doi.org/10.1007/s10479-020-03912-1# Kwak, D.W., Seo, Y.J., Mason, R., 2018. Investigating the relationship between supply chain innovation, risk management capabilities and competitive advantage in global supply chains. International Journal of Operations and Production Management 38, 2–21.# Momeni, Mansour; Zarashki, Nima (1400). Modeling the closed loop supply chain using scenarios in the face of uncertainty in the quantity and quality of returns. Industrial Management, 13 (1), 105-130. (In Persian) Moros, A., Mendoza, H., Amaya, R., Ortiz, M.: Diseño de máxima utilidad para cadenas de suministro: Un caso de producción y distribución de bioplaguicidas. INGENIERÍA, Vol. 26, Num. 2, pp. 123-142 (2021). © The authors; reproduction right holder Universidad Distrital Francisco José de Caldas. https://doi.org/10.14483/23448393.16756 Nakano, M., & Lau, A. K. (2020). A systematic review on supply chain risk management: using the strategy- structure-process-performance framework. International Journal of Logistics Research and Applications, 23(5), 443–473. Nasirian, Mohammad (2019). Identification, leveling and ranking of factors affecting the green supply chain with the integrated approach of ISM and fuzzy multi-criteria decision making. Quarterly magazine of new research approaches in management and accounting, fourth year, number 94, 156-189. (In Persian) Olfat, L., Shahryarinia, A. (2014). “Interpretive Structural Modeling of Effective Factors of Partner election in Agile Supply Chain”. Journal of Production and Operations Management, 5(2), 128-109. (In Persian) Rashid, A, Hishamuddin, H.; Saibani, N.; Abu Mansor, M.R.; Harun, Z. A Review of Supply Chain Uncertainty\ Management in the End-of-Life Vehicle Industry. Sustainability 2022, 14, 12573. https://doi.org/10.3390/ su141912573 Sadeghi Moghadam, Mohammad Reza and Momeni, Mansour and Nalchigar, Soroush (2008). Planning integrated supply, production and supply chain distribution using genetic algorithm. Industrial Management, 1(2), 71-88. (In Persian) Salisu, I., Hashim, N., Ismail, R & Galadanchi, A. (2019). Does the tripartite social capital predict resilience of supply chain managers through commitment? Uncertain Supply Chain Management, 7(3), 399-416. Sathish, T (2019), Profit Maximization in Reverse Logistic based on Disassembly Scheduling using Hybrid Bee Colony Bat Optimization, Transactions of the Canadian Society for Mechanical Engineering Shekarian, M & Mahour Mellat Parast (2020): An Integrative approach to supply chain disruption risk and resilience management: a literature review, International Journal of Logistics Research and Applications, DOI: 10.1080/13675567.2020.1763935 Seyedmohsen Hosseini, Dmitry Ivanov (2021), A Multi-Layer Bayesian Network Method for Supply Chain Disruption Modelling in the Wake of the COVID-19 Pandemic, Sultan, B., Gaetani, M., 2016. Agriculture in West Africa in the twenty-first century: climate change and impacts scenarios, and potential for adaptation. Frontiers in Plant Science 7, 1262. Songsong Liua, Lazaors G. Papageorgiou (2017), Fair Pro_t Distribution in Multi-echelon Supply Chains via Transfer Prices, Preprint submitted to Omega: The International Journal of Management Science Wang, G.; Guo, Q.; Jiang, Q.; Li, B. A Study on the Relationship between Corporate Social Responsibility and Supply Chain Profit Distribution in the Context of Common Prosperity. Sustainability 2022, 14, 12410. https://doi.org/ 10.3390/su141912410 Wu C., Barnes D.,(2020), “A literature review of decision-making models and approaches for partner selection in agile supply chains”, Journal of Purchasing & Supply Management 17,256–274 Yavari, M. Zaker, H., 2019. An integrated two-layer network model for designing a resilient green-closed loop supply chain of perishable products under disruption. Journal of Cleaner Production 230, 198–218.