بررسی اثرات ضد میکروبی نایسین کپسوله شده بر رشد و توانایی اتصال باکتری های استرپتوکوکوس موتانس
الموضوعات : Biotechnological Journal of Environmental Microorganisms
1 - گروه میکروبیولوژی ، دانشکده علوم پایه ، واحد رشت ، دانشگاه آزاد اسلامی
الکلمات المفتاحية: میکرولیپوزوم, نایسین, منحنی رشد, پلاک دندانی, استرپتوکوک موتانس,
ملخص المقالة :
نایسین یک پپتید ضد میکروبی است که از 34 باقیمانده اسید آمینه تشکیل شده است. به دلیل وجود اسیدهای آمینه لانتیونین، به عنوان یک لانتی بیوتیک طبقه بندی می شود و اثربخشی آن را در برابر میکروارگانیسم های بیماری زا متعدد نشان می دهد. اگرچه اثربخشی آن در محیط های مختلف بالینی و محیطی به دلیل واکنش با سایر ترکیبات به شدت کاهش می یابد. روشهای جدید ممکن است بتوانند این مشکل را در میکروکپسولها حل کرده و آزادسازی آنها را کنترل کنند. استفاده در خمیر دندان به کنترل عواملی که در پوسیدگی دندان کمک می کند. هدف از این مطالعه بررسی اثرات نایسین آزاد و کپسوله شده بر استرپتوکوک موتانس و سینتیک رشد آن بود. نایسین با استفاده از روش هیدراتاسیون لایه نازک در لیپوزوم های لسیتین و آلژینات کپسوله شد. اندازه و توزیع میکرولیپوزوم های نایسین با استفاده از میکروسکوپ الکترونی روبشی و تکنیک های پراکندگی نور دینامیک (DLS) تعیین شد. برای تعیین حداقل غلظت بازدارنده (MIC) میکرولیپوزوم های نایسین و نایسین آزاد بر روی S. mutans در غلظت های مختلف از 0.78 تا 25 میکروگرم بر میلی لیتر. برای بررسی سینتیک رشد، سرعت رشد یا مهار S. mutans با قرار دادن آن در معرض غلظتهای معادل MIC در طول یک دوره 50 ساعته در طول موج 600 نانومتر مورد مطالعه قرار گرفت. این مطالعه اثرات میکروکپسول های نایسین و نایسین را با آنتی بیوتیک های آموکسی سیلین و پنی سیلین مقایسه شد. نایسین ریزپوشانی شده رشد سویههای پلانکتون S. mutans را به طور موثرتری نسبت به نایسین آزاد کاهش داد. میکرولیپوزوم های نیسین در غلظت 6.25 میکروگرم بر میلی لیتر رشد S. mutans را مهار کردند، در حالی که اثرات بازدارندگی نایسین آزاد در غلظت 12.5 میکروگرم بر میلی لیتر در هر دو سویه بالینی و استاندارد مشاهده شد. علاوه بر این، کاهش قابل توجهی در تولید اسید لاکتیک توسط S. mutans وجود داشت. با توجه به یافتههای کنونی در خصوص اثرات بازدارندگی و ماندگاری میکرو کپسولهای نایسین، میتوان از آن در ترکیب با روشهای دیگر برای کنترل پوسیدگی دندان و افزایش اثربخشی ضد پوسیدگی استفاده کرد.
Aleti, G., Sessitsch, A., & Brader, G. (2015). Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput Struct Biotechnol J, 13. https://doi.org/10.1016/j.csbj.2015.03.003
Ansari, J. M., Abraham, N. M., Massaro, J., Murphy, K., Smith-Carpenter, J., & Fikrig, E. (2017). Anti-biofilm activity of a self-aggregating peptide against Streptococcus mutans. Front Microbiol, 8. https://doi.org/10.3389/fmicb.2017.00488
Bowen, W. H., Burne, R. A., Wu, H., & Koo, H. (2018). Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol, 26. https://doi.org/10.1016/j.tim.2017.09.008
Cagetti, M. G., Mastroberardino, S., Milia, E., Cocco, F., Lingström, P., & Campus, G. (2013). The use of probiotic strains in caries prevention: a systematic review. Nutrients, 5. https://doi.org/10.3390/nu5072530
Delves-Broughton, J. (1993). The use of EDTA to enhance the efficacy of nisin towards Gram-negative bacteria. International biodeterioration & biodegradation, 32(1-3), 87-97.
Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C., & Yu, W. H. (2010). The human oral microbiome. J Bacteriol, 192. https://doi.org/10.1128/JB.00542-10
Dominy, S. S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., Nguyen, M., Haditsch, U., Raha, D., Griffin, C., Holsinger, L. J., Arastu-Kapur, S., Kaba, S., Lee, A., Ryder, M. I., Potempa, B., Mydel, P., Hellvard, A., Adamowicz, K., . . . Potempa, J. (2019). Porphyromonas gingivalis in Alzheimer's disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv, 5. https://doi.org/10.1126/sciadv.aau3333
Forssten, S. D., Björklund, M., & Ouwehand, A. C. (2010). Streptococcus mutans, caries and Simulation models. Nutrients, 2. https://doi.org/10.3390/nu2030290
Gao, L., Kuraji, R., Zhang, M. J., Martinez, A., Radaic, A., Kamarajan, P., Le, C., Zhan, L., Ye, C., Rangé, H., Sailani, M. R., & Kapila, Y. L. (2022). Nisin probiotic prevents inflammatory bone loss while promoting reparative proliferation and a healthy microbiome. NPJ Biofilms Microbiomes., 8. https://doi.org/10.1038/s41522-022-00307-x
Hagiwara, A., Imai, N., Nakashima, H., Toda, Y., Kawabe, M., Furukawa, F., Delves-Broughton, J., Yasuhara, K., & Hayashi, S. M. (2010). A 90-day oral toxicity study of nisin A, an anti-microbial peptide derived from Lactococcus lactis subsp. lactis, in F344 rats. Food Chem Toxicol, 48. https://doi.org/10.1016/j.fct.2010.06.002
Hagiwara, Y., Arima, H., Hirayama, F., & Uekama, K. (2006). Prolonged retention of doxorubicin in tumor cells by encapsulation of γ-cyclodextrin complex in pegylated liposomes. Journal of inclusion phenomena and macrocyclic chemistry, 56, 65-68.
He, Z., Huang, Z., Jiang, W., & Zhou, W. (2019). Antimicrobial activity of cinnamaldehyde on Streptococcus mutans biofilms. Front Microbiol, 10. https://doi.org/10.3389/fmicb.2019.02241
Jain, S., Winuprasith, T., & Suphantharika, M. (2020). Encapsulation of lycopene in emulsions and hydrogel beads using dual modified rice starch: Characterization, stability analysis and release behaviour during in-vitro digestion. Food Hydrocolloids, 104, 105730.
Kazeminia, M., Abdi, A., Shohaimi, S., Jalali, R., Vaisi-Raygani, A., & Salari, N. (2020). Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: a systematic review and meta-analysis. Head Face Med, 16. https://doi.org/10.1186/s13005-020-00237-z
Kumar, K. R., Balasubramanian, K., Kumar, G. P., Bharat Kumar, C., & Cheepu, M. M. (2022). Experimental investigation of nano-encapsulated molten salt for medium-temperature thermal storage systems and modeling of neural networks. International Journal of Thermophysics, 43(9), 145.
Linville, R. M., Komin, A., Lan, X., DeStefano, J. G., Chu, C., Liu, G., Walczak, P., Hristova, K., & Searson, P. C. (2021). Reversible blood-brain barrier opening utilizing the membrane active peptide melittin in vitro and in vivo. Biomaterials, 275. https://doi.org/10.1016/j.biomaterials.2021.120942
Narsaiah, K., Jha, S. N., Wilson, R. A., Mandge, H. M., & Manikantan, M. R. (2014). Optimizing microencapsulation of nisin with sodium alginate and guar gum. Journal of Food Science and Technology, 51, 4054-4059.
Petersen, P. E., & Ogawa, H. (2016). Prevention of dental caries through the use of fluoride–the WHO approach. Community Dent Health, 33.
Popa, E. E., Miteluț, A. C., Râpă, M., Popescu, P. A., Drăghici, M. C., Geicu-Cristea, M., & Popa, M. E. (2022). Antimicrobial active packaging containing nisin for preservation of products of animal origin: An overview. Foods, 11(23), 3820.
Quichaba, M. B., Moreira, T. F. M., De Oliveira, A., De Carvalho, A. S., De Menezes, J. L., Gonçalves, O. H., de Abreu Filho, B. A., & Leimann, F. V. (2023). Biopreservatives against foodborne bacteria: combined effect of nisin and nanoncapsulated curcumin and co-encapsulation of nisin and curcumin. Journal of Food Science and Technology, 60(2), 581-589.
Radaic, A., Brody, H., Contreras, F., Hajfathalian, M., Lucido, L., Kamarajan, P., & Kapila, Y. L. (2022). Nisin and nisin probiotic disrupt oral pathogenic biofilms and restore their microbiome composition towards healthy control levels in a peri-implantitis setting. Microorganisms, 10(7), 1336.
Radaic, A., Ye, C., Parks, B., Gao, L., Kuraji, R., Malone, E., Kamarajan, P., Zhan, L., & Kapila, Y. L. (2020). Modulation of pathogenic oral biofilms towards health with nisin probiotic. J Oral Microbiol, 12. https://doi.org/10.1080/20002297.2020.1809302
Shin, J. M., Gwak, J. W., Kamarajan, P., Fenno, J. C., Rickard, A. H., & Kapila, Y. L. (2016). Biomedical applications of nisin. J Appl Microbiol, 120. https://doi.org/10.1111/jam.13033
Taylor, T. M., Bruce, B. D., Weiss, J., & Davidson, P. M. (2008). Listeria monocytogenes and Escherichia coli O157: H7 inhibition in vitro by liposome‐encapsulated nisin and ethylene diaminetetraacetic acid. Journal of food safety, 28(2), 183-197.
Teixeira, A. S., González-Benito, M. E., & Molina-García, A. D. (2014). Determination of glassy state by cryo-SEM and DSC in cryopreservation of mint shoot tips by encapsulation–dehydration. Plant Cell, Tissue and Organ Culture (PCTOC), 119, 269-280.
van Staden, A. D., Brand, A. M., & Dicks, L. M. T. (2012). Nisin F-loaded brushite bone cement prevented the growth of Staphylococcus aureus in vivo. J Appl Microbiol, 112. https://doi.org/10.1111/j.1365-2672.2012.05241.x
Wei, G. X., Campagna, A. N., & Bobek, L. A. (2006). Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Chemother, 57. https://doi.org/10.1093/jac/dkl120
Wu, J., Fan, Y., Wang, X., Jiang, X., Zou, J., & Huang, R. (2020). Effects of the natural compound, oxyresveratrol, on the growth of Streptococcus mutans, and on biofilm formation, acid production, and virulence gene expression. Eur J Oral Sci, 128. https://doi.org/10.1111/eos.12667
Zainodini, N., Hassanshahi, G., Hajizade, M., Khanamani Falahati-Pour, S., Mahmoodi, M., & Mirzaei, M. R. (2018). Nisin induces cytotoxicity and apoptosis in human asterocytoma cell line (SW1088). Asian Pac J Cancer Prev, 19.