نقش تعیینکننده تغذیه در تسریع فرآیند بازتوانی ورزشکاران
الموضوعات :
1 - واحد پرند، دانشگاه آزاد اسلامی
الکلمات المفتاحية: بازتوانی, آسیب ورزشی, کربوهیدرات, پروتئین, چربی, ریزمغذی,
ملخص المقالة :
با توجه به تعدد میزان آسیب دیدگی در ورزش، آسیب دیدگی ورزشی علاوه بر تأثیرات بدنی و روانی بر ورزشکاران، هزینههای هنگفتی را به تیمها و فدراسیونهای ورزشی تحمیل میکنند. این هزینهها شامل درمان، جراحی، و دورههای طولانی بازتوانی میباشد. با این حال، یک برنامه تغذیهای متناسب و دقیق در دوره بازتوانی میتواند به کاهش این هزینهها کمک کند، زیرا سرعت بهبودی را افزایش داده، و از آسیبهای مجدد پیشگیری مینماید. در دوره بازتوانی، پروتئین نقش حیاتی در ترمیم بافتها و جلوگیری از تجزیه عضلانی ایفاء میکند، و مصرف روزانه 2/1 تا 2 گرم به ازای هر کیلوگرم وزن بدن با تاکید بر اهمیت لوسین توصیه میشود. کربوهیدراتها، به عنوان منبع اصلی انرژی، نقش مهمی در تسریع روند بهبودی دارند، به طوری که تقریباً 3 تا 5 گرم بر کیلوگرم وزن بدن یا 55% کالریهای مصرفی از کربوهیدراتهای پیچیده تأمین شود. چربیها نیز باید تقریباً ۲۰ تا ۲۵% کالری مصرفی را تشکیل دهند، که معادل 8/0 تا ۲ گرم به ازای هر کیلوگرم وزن بدن در روز میباشد. نشان دهده شده است که استفاده از منابع سالم نظیر روغن زیتون، آووکادو و ماهی به کاهش التهاب و پشتیبانی از ترمیم بافت کمک میکنند. همکاری میان مربیان، ورزشکاران، و مدیران ورزشی با متخصصان تغذیه ورزشی برای توسعه و اجرای برنامههای تغذیهای مناسب، نه تنها به سرعتبخشی به فرآیند بازتوانی کمک میکند بلکه از هزینههای مالی ناشی از آسیبدیدگیهای ورزشی نیز جلوگیری مینماید. تغذیه متعادل و هدفمند، شامل مصرف پروتئین کافی، کربوهیدراتهای پیچیده و چربیهای سالم بوده، که اساس بازگشت سریعتر ورزشکاران به سطوح عملکردی بالا را فراهم میآورد، و به کاهش دورههای بازتوانی و هزینههای مرتبط کمک میکند. با توجه به تعدد میزان آسیب دیدگی در ورزش، آسیب دیدگی ورزشی علاوه بر تأثیرات بدنی و روانی بر ورزشکاران، هزینههای هنگفتی را به تیمها و فدراسیونهای ورزشی تحمیل میکنند. این هزینهها شامل درمان، جراحی، و دورههای طولانی بازتوانی میباشد. با این حال، یک برنامه تغذیهای متناسب و دقیق در دوره بازتوانی میتواند به کاهش این هزینهها کمک کند، زیرا سرعت بهبودی را افزایش داده، و از آسیبهای مجدد پیشگیری مینماید.
[1] Kalkhoven, J.T., Athletic Injury Research: Frameworks, Models and the Need for Causal Knowledge. Sports Medicine, 2024: p. 1-17.
[2] Payne-James, J. and R.W. Byard, Sports-related deaths, in Forensic and Legal Medicine. 2023, CRC Press. p. 332-345.
[3] Turska-Kmieć, A., et al., Sport activities for children and adolescents: the Position of the European Academy of Paediatrics and the European Confederation of Primary Care Paediatricians 2023-Part 1. Pre-participation physical evaluation in young athletes. Front Pediatr, 2023. 11: p. 1125958.
[4] Giraldo-Vallejo, J.E., et al., Nutritional Strategies in the Rehabilitation of Musculoskeletal Injuries in Athletes: A Systematic Integrative Review. Nutrients, 2023. 15(4): p. 819.
[5] Papadopoulou, S.K., Rehabilitation nutrition for injury recovery of athletes: the role of macronutrient intake. Nutrients, 2020. 12(8): p. 2449.
[6] Kucera, K.L. and R.C. Cantu, CATASTROPHIC SPORTS INJURY RESEARCH, FOURTIETH ANNUAL REPORT, FALL 1982 - SPRING 2022. 2023, National Center for Catastrophic Sport Injury Research: At The University of North Carolina at Chapel Hill.
[7] Smith-Ryan, A.E., et al., Nutritional considerations and strategies to facilitate injury recovery and rehabilitation. Journal of athletic training, 2020. 55(9): p. 918-930.
[8] Drew, M.K., B.P. Raysmith, and P.C. Charlton, Injuries impair the chance of successful performance by sportspeople: a systematic review. Br J Sports Med, 2017. 51(16): p. 1209-1214.
[9] Lu, F.J. and Y. Hsu, Injured athletes' rehabilitation beliefs and subjective well-being: the contribution of hope and social support. J Athl Train, 2013. 48(1): p. 92-8.
[10] Amawi, A., et al., Athletes’ nutritional demands: a narrative review of nutritional requirements. Frontiers in Nutrition, 2024. 10: p. 1331854.
[11] Beck, K.L., et al., Micronutrients and athletic performance: A review. Food and Chemical Toxicology, 2021. 158: p. 112618.
[12] Wolfe, R.R., The underappreciated role of muscle in health and disease. The American journal of clinical nutrition, 2006. 84(3): p. 475-482.
[13] Moreno-Pérez, V., et al., Training and competition injury epidemiology in professional basketball players: a prospective observational study. Phys Sportsmed, 2023. 51(2): p. 121-128.
[14] Tipton, K.D., Nutritional support for exercise-induced injuries. Sports Medicine, 2015. 45(Suppl 1): p. 93-104.
[15] Peeling, P., et al., Evidence-based supplements for the enhancement of athletic performance. International journal of sport nutrition and exercise metabolism, 2018. 28(2): p. 178-187.
[16] Grondin, J., et al., Relevant strength parameters to allow return to running after primary anterior cruciate ligament reconstruction with hamstring tendon autograft. International Journal of Environmental Research and Public Health, 2022. 19(14): p. 8245.
[17] Vélez-Gutiérrez, J.M., et al., Cortical Changes as a Result of Sports Injuries: A Short Commentary. Cuerpo Cult. Y Mov, 2022. 12: p. 7884.
[18] Martone, A.M., et al., Exercise and Protein Intake: A Synergistic Approach against Sarcopenia. Biomed Res Int, 2017. 2017: p. 2672435.
[19] Tarmast, D. Metabolism and nutrients intake in adolescents in exercise: Proteins. in The 4th National Conference on Applied Research in Physical Education, Sport & Athletic Science. 2020. Tehran, Iran.
[20] Jäger, R., et al., International Society of Sports Nutrition Position Stand: protein and exercise. Journal of the International Society of Sports Nutrition, 2017. 14(1): p. 20.
[21] Nicastro, H., et al., An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino acids, 2011. 40: p. 287-300.
[22] Mamerow, M.M., et al., Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. The Journal of nutrition, 2014. 144(6): p. 876-880.
[23] Wall, B.T., et al., Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta physiologica, 2014. 210(3): p. 600-611.
[24] Phillips, S.M. and L.J. Van Loon, Dietary protein for athletes: from requirements to optimum adaptation. Food, Nutrition and Sports Performance III, 2013: p. 29-38.
[25] Krieger, J.W., et al., Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression. The American journal of clinical nutrition, 2006. 83(2): p. 260-274.
[26] Wall, B.T., J.P. Morton, and L.J. Van Loon, Strategies to maintain skeletal muscle mass in the injured athlete: nutritional considerations and exercise mimetics. European journal of sport science, 2015. 15(1): p. 53-62.
[27] Moore, D.R., et al., Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. The American journal of clinical nutrition, 2009. 89(1): p. 161-168.
[28] Areta, J.L., et al., Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. The Journal of physiology, 2013. 591(9): p. 2319-2331.
[29] Kerksick, C.M., et al., ISSN exercise & sports nutrition review update: research & recommendations: nutrient timing. Journal of the international society of sports nutrition, 2017. 15: p. 1-57.
[30] Tang, J.E., et al., Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. Journal of applied physiology, 2009.
[31] Burd, N.A., et al., Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and after resistance exercise in elderly men. British Journal of nutrition, 2012. 108(6): p. 958-962.
[32] Trommelen, J. and L.J. Van Loon, Pre-sleep protein ingestion to improve the skeletal muscle adaptive response to exercise training. Nutrients, 2016. 8(12): p. 763.
[33] Wall, B.T., et al., Disuse impairs the muscle protein synthetic response to protein ingestion in healthy men. The Journal of Clinical Endocrinology & Metabolism, 2013. 98(12): p. 4872-4881.
[34] Tarmast, D. Metabolism and nutrients intake in adolescents in exercise: Carbohydrates. in The 4th National Conference on Novel Approaches to Education and Research. 2019. Amol, Mazandaran, Iran.
[35] Howarth, K.R., et al., Effect of glycogen availability on human skeletal muscle protein turnover during exercise and recovery. Journal of Applied Physiology, 2010. 109(2): p. 431-438.
[36] Papadopoulou, S.K., et al., The Key Role of Nutritional Elements on Sport Rehabilitation and the Effects of Nutrients Intake. Sports (Basel), 2022. 10(6).
[37] Thomas, D.T., K.A. Erdman, and L.M. Burke, American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med Sci Sports Exerc, 2016. 48(3): p. 543-68.
[38] Demling, R.H., Nutrition, anabolism, and the wound healing process: an overview. Eplasty, 2009. 9: p. e9.
[39] Lin, Y.H., [Nutritional Care in Acute and Chronic Illness]. Hu Li Za Zhi, 2021. 68(3): p. 4-6.
[40] Stechmiller, J.K., Understanding the role of nutrition and wound healing. Nutrition in clinical practice, 2010. 25(1): p. 61-68.
[41] Lin, E., J.G. Kotani, and S.F. Lowry, Nutritional modulation of immunity and the inflammatory response. Nutrition, 1998. 14(6): p. 545-550.
[42] Tarmast, D., Metabolism and nutrients intake in adolescents in exercise: Fats, in The third national conference on lifestyle and health. 2020: Yazd Branch, Islamic Azad University, Yazd, Iran. p. 12.
[43] Musumeci, G., et al., Post-traumatic caspase-3 expression in the adjacent areas of growth plate injury site: a morphological study. International journal of molecular sciences, 2013. 14(8): p. 15767-15784.
[44] Alcock, R., et al., Injury management and rehabilitation, in Nutrition for Sport, Exercise, and Performance. 2024, Routledge. p. 193-201.
[45] Vidmar, M.F., et al., Supplementation with omega-3 after reconstruction of the anterior cruciate ligament. Revista Brasileira de Medicina do Esporte, 2016. 22: p. 131-137.
[46] You, J.-S., et al., Dietary fish oil alleviates soleus atrophy during immobilization in association with Akt signaling to p70s6k and E3 ubiquitin ligases in rats. Applied Physiology, Nutrition, and Metabolism, 2010. 35(3): p. 310-318.
[47] EFSA Panel on Dietetic Products, N. and Allergies, Scientific Opinion on the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA Journal, 2012. 10(7): p. 2815.
[48] Tarmast, D. Metabolism and nutrient intake in adolescents and young adults in exercise: Fuids and Electrolytes. in National Conference on the Latest Research in Sports Sciences. 2020. Ardabil, Iran: University of Mohaghegh Ardabili.
[49] Brancaccio, M., et al., The biological role of vitamins in athletes’ muscle, heart and microbiota. International journal of environmental research and public health, 2022. 19(3): p. 1249.
[50] Fukushima, H. and F. Koga, Impact of sarcopenia in the management of urological cancer patients. Expert review of anticancer therapy, 2017. 17(5): p. 455-466.
[51] Zadeh-Ardabili, P.M., et al., Palm vitamin E reduces locomotor dysfunction and morphological changes induced by spinal cord injury and protects against oxidative damage. Scientific reports, 2017. 7(1): p. 14365.
[52] Shaw, G., et al., Vitamin C–enriched gelatin supplementation before intermittent activity augments collagen synthesis. The American journal of clinical nutrition, 2017. 105(1): p. 136-143.
[53] Kloubec, J. and C. Harris, Whole foods nutrition for enhanced injury prevention and healing. ACSM's Health & Fitness Journal, 2016. 20(2): p. 7-11.
[54] Villani, A., et al., A randomised controlled intervention study investigating the efficacy of carotenoid-rich fruits and vegetables and extra-virgin olive oil on attenuating sarcopenic symptomology in overweight and obese older adults during energy intake restriction: protocol paper. BMC geriatrics, 2018. 18: p. 1-10.
[55] Musumeci, G., et al., Post-operative rehabilitation and nutrition in osteoarthritis [version 3; peer review: 2 approved, 1 ap
proved with reservations]. F1000Research, 2016. 3(116). [56] Yavari, A., et al., Exercise-induced oxidative stress and dietary antioxidants. Asian journal of sports medicine, 2015. 6(1).
[57] Malaguti, M., C. Angeloni, and S. Hrelia, Polyphenols in exercise performance and prevention of exercise-induced muscle damage. Oxidative medicine and cellular longevity, 2013. 2013.
[58] Tarmast, D., Elucidating the Impact of Iranian Herbs on Athletic Performance: A Narrative Review of Scientific Evidence. Journal of Sports Physiology and Athletic Conditioning (JSPAC), 2023. 3(10): p. 50-64.
[59] Agarwal, K.A., et al., Efficacy of turmeric (curcumin) in pain and postoperative fatigue after laparoscopic cholecystectomy: a double-blind, randomized placebo-controlled study. Surgical endoscopy, 2011. 25: p. 3805-3810.
[60] Aragon, A.A. and B.J. Schoenfeld, Nutrient timing revisited: is there a post-exercise anabolic window? Journal of the International Society of Sports Nutrition, 2013. 10(1): p. 5.
[61] Cribb, P.J. and A. Hayes, Effects of supplement-timing and resistance exercise on skeletal muscle hypertrophy. Medicine & Science in Sports & Exercise, 2006. 38(11): p. 1918-1925.
[62] Josse, A.R., et al., Body composition and strength changes in women with milk and resistance exercise. Medicine & Science in Sports & Exercise, 2010. 42(6): p. 1122-1130.
[63] McGlory, C., et al., Temporal changes in human skeletal muscle and blood lipid composition with fish oil supplementation. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2014. 90(6): p. 199-206.
[64] Karpouzos, A., et al., Nutritional aspects of bone health and fracture healing. Journal of osteoporosis, 2017. 2017.
[65] Palacios, C., The role of nutrients in bone health, from A to Z. Critical reviews in food science and nutrition, 2006. 46(8): p. 621-628.
[66] Close, G.L., et al., Nutrition for the prevention and treatment of injuries in track and field athletes. International journal of sport nutrition and exercise metabolism, 2019. 29(2): p. 189-197.