مقایسه مدل های از پیش آموزش داده شده در خلاصه سازی استخراجی نظرات کاربران موبایل
الموضوعات :مهرداد رضوی دهکردی 1 , hamid rastegari 2 , اکبر نبی اللهی نجف آبادی 3 , تقی جاودانی گندمانی 4
1 - مهندسی کامپیوتر، فنی مهندسی و علوم پایه،نجف آباد ایران، دانشگاه آزاد اسلامی واحد نجف آباد
2 - Department Of Computer And Information Technology, Islamic Azad University,najafabad, Iran.
3 - واحد نجف آباد دانشگاه آزاد اسلامی
4 - عضو هیات علمی، دانشگاه شهرکرد
الکلمات المفتاحية: برنامه های موبایل, خلاصه سازی نظرات, آنالیز فروشگاه گوگل , مدل از پیش آموزش دیده,
ملخص المقالة :
از زمان پیدایش برنامه های موبایل، نظرات کاربران برای توسعه دهندگان برنامه بسیار ارزشمند بوده است چون حاوی احساسات، اشکالات و نیازهای جدید کاربران بوده است. به دلیل حجم بالای نظرات، خلاصه سازی آن ها کار بسیار دشوار و مستعد خطاست. تا کنون کارهای بسیاری در زمینه خلاصه سازی استخراجی نظرات کاربران انجام شده است؛ اما در اکثر پژوهش ها یا از روش های قدیمی یادگیری ماشین و یا پردازش زبان طبیعی استفاده شده است و یا اگر مدلی برای خلاصه سازی با استفاده از مبدل ها آموزش دیده است، مشخص نشده که این مدل برای خلاصه سازی نظرات کاربران موبایل کاربرد دارد یا خیر ؟ به بیان دیگر مدل برای خلاصه سازی متون به صورت عام منظوره ارائه شده و هیچ بررسی برای استفاده از آن در خلاصه سازی های خاص منظوره انجام نشده است . در این مقاله در ابتدا 1000 نظر به صورت تصادفی از پایگاه داده Kaggle مربوط به نظرات کاربران انتخاب شد و سپس به 4 مدل از پیش آموزش دیده bart_large_cnn، bart_large_xsum، mT5_multilingual_XLSum و Falcon’sai Text_Summrization برای خلاصه سازی داده شد و معیار های Rouge1، Rouge2 و RoungL برای هر کدام از مدل ها به طور جداگانه محاسبه شد و در نهایت مشخص شد که مدل از پیش آموزش دیده Falcon’sAI با امتیاز 6464/0 در معیار rouge1 ، امتیاز 6140/0 در معیار rouge2 و امتیاز 6346/0 در rougeL بهترین مدل برای خلاصه سازی نظرات کاربران فروشگاه Play است
M. R. Dehkordi, H. Seifzadeh, G. Beydoun, and M. H. Nadimi-Shahraki, “Success prediction of android applications in a novel repository using neural networks,” Complex Intell. Syst., vol. 6, no. 3, pp. 573–590, 2020, doi: 10.1007/s40747-020-00154-3.
W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app store analysis for software engineering,” IEEE Trans. Softw. Eng., vol. 43, no. 9, pp. 817–847, 2017, doi: 10.1109/TSE.2016.2630689.
E. Guzman and W. Maalej, “How Do Users Like This Feature? A Fine Grained Sentiment Analysis of App Reviews,” in 2014 IEEE 22nd International Requirements Engineering Conference (RE), Aug. 2014, pp. 153–162, doi: 10.1109/RE.2014.6912257.
D. Pagano and W. Maalej, “User feedback in the appstore: An empirical study,” in 2013 21st IEEE International Requirements Engineering Conference (RE), Jul. 2013, pp. 125–134, doi: 10.1109/RE.2013.6636712.
L. V. G. Carreno and K. Winbladh, “Analysis of user comments: An approach for software requirements evolution,” Proc. - Int. Conf. Softw. Eng., pp. 582–591, 2013, doi: 10.1109/ICSE.2013.6606604.
W. Maalej and D. Pagano, “On the socialness of software,” Proc. - IEEE 9th Int. Conf. Dependable, Auton. Secur. Comput. DASC 2011, pp. 864–871, 2011, doi: 10.1109/DASC.2011.146.
N. Seyff, F. Graf, and N. Maiden, “Using mobile RE tools to give end-users their own voice,” Proc. 2010 18th IEEE Int. Requir. Eng. Conf. RE2010, pp. 37–46, 2010, doi: 10.1109/RE.2010.15.
A. Al-Subaihin et al., “App store mining and analysis,” in Proceedings of the 3rd International Workshop on Software Development Lifecycle for Mobile, Aug. 2015, pp. 1–2, doi: 10.1145/2804345.2804346.
N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “AR-miner: Mining informative reviews for developers from mobile app marketplace,” in Proceedings - International Conference on Software Engineering, May 2014, no. 1, pp. 767–778, doi: 10.1145/2568225.2568263.
E. C. Groen, J. Doerr, and S. Adam, “Towards Crowd-Based Requirements Engineering A Research Preview,” in Requirements Engineering: Foundation for Software Quality, 2015, pp. 247–253.
S. A. Licorish, B. T. R. Savarimuthu, and S. Keertipati, “Attributes that predict which features to fix: Lessons for app store mining,” ACM Int. Conf. Proceeding Ser., vol. Part F1286, pp. 108–117, 2017, doi: 10.1145/3084226.3084246.
H. P. Luhn, “The Automatic Creation of Literature Abstracts,” IBM J. Res. Dev., vol. 2, no. 2, pp. 159–165, 2010, doi: 10.1147/rd.22.0159.
K. S. Kalyan, A. Rajasekharan, and S. Sangeetha, “AMMUS : A Survey of Transformer-based Pretrained Models in Natural Language Processing,” pp. 1–42, 2021, [Online]. Available: http://arxiv.org/abs/2108.05542.
S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
A. M. and G. H. Alex Graves, “Speech Recognition with Deep Recurrent Neural Networks , Department of Computer Science, University of Toronto,” Dep. Comput. Sci. Univ. Toronto, vol. 3, no. 3, pp. 45–49, 2013, [Online]. Available: https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=6638947&ref=aHR0cHM6Ly9pZWVleHBsb3JlLmllZWUub3JnL2Fic3RyYWN0L2RvY3VtZW50LzY2Mzg5NDc/Y2FzYV90b2tlbj1OQUo1VFJxWk5JRUFBQUFBOmtPZmdDbS00NGhqaGI2N3dMd2JrU3lSaEdJREhBWnpMSkxoT201Um5YMXR0S0poUDAtM2hkbT
Y. Kim, “Convolutional Neural Networks for Sentence Classification,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1746–1751, doi: 10.3115/v1/D14-1181.
V. Gupta and G. S. Lehal, “A Survey of Text Summarization Extractive techniques,” J. Emerg. Technol. Web Intell., vol. 2, no. 3, pp. 258–268, 2010, doi: 10.4304/jetwi.2.3.258-268.
N. Moratanch and S. Chitrakala, “A survey on extractive text summarization,” Int. Conf. Comput. Commun. Signal Process. Spec. Focus IoT, ICCCSP 2017, no. November, 2017, doi: 10.1109/ICCCSP.2017.7944061.
M. Allahyari et al., “Text Summarization Techniques: A Brief Survey,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 10, 2017, doi: 10.14569/ijacsa.2017.081052.
N. Moratanch and S. Chitrakala, “A survey on abstractive text summarization,” Proc. IEEE Int. Conf. Circuit, Power Comput. Technol. ICCPCT 2016, no. November, 2016, doi: 10.1109/ICCPCT.2016.7530193.
S. Gholamrezazadeh, M. A. Salehi, and B. Gholamzadeh, “A Comprehensive Survey on Text Summarization Systems.” doi: 10.1109/CSA.2009.5404226.
G. L. A. Babu and S. Badugu, “A Survey on Automatic Text Summarisation,” Lect. Notes Networks Syst., vol. 612, pp. 679–689, 2014, doi: 10.1007/978-981-19-9228-5_58.
R. Mishra et al., “Text summarization in the biomedical domain: a systematic review of recent research.,” J. Biomed. Inform., vol. 52, pp. 457–467, Dec. 2014, doi: 10.1016/j.jbi.2014.06.009.
N. Andhale and L. A. Bewoor, “An overview of text summarization techniques,” Proc. - 2nd Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2016, no. May, 2017, doi: 10.1109/ICCUBEA.2016.7860024.
J. R. Thomas, S. K. Bharti, and K. S. Babu, “Automatic keyword extraction for text summarization in e-newspapers,” ACM Int. Conf. Proceeding Ser., vol. 25-26-August-2016, 2016, doi: 10.1145/2980258.2980442.
M. Gambhir and V. Gupta, “Recent automatic text summarization techniques: a survey,” Artif. Intell. Rev., vol. 47, 2017, doi: 10.1007/s10462-016-9475-9.
W. S. El-Kassas, C. R. Salama, A. A. Rafea, and H. K. Mohamed, “Automatic text summarization: A comprehensive survey,” Expert Syst. Appl., vol. 165, no. November 2021, 2021, doi: 10.1016/j.eswa.2020.113679.
L. Abualigah, M. Q. Bashabsheh, H. Alabool, and M. Shehab, “Text Summarization: A Brief Review,” Stud. Comput. Intell., vol. 874, no. January, pp. 1–15, 2020, doi: 10.1007/978-3-030-34614-0_1.
M. Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,” CoRR, vol. abs/1910.1, Oct. 2019, doi: https://doi.org/10.48550/arXiv.1910.13461.
S. Narayan, S. B. Cohen, and M. Lapata, “Don’t give me the details, just the summary! Topic-aware convolutional neural networks for extreme summarization,” Proc. 2018 Conf. Empir. Methods Nat. Lang. Process. EMNLP 2018, pp. 1797–1807, 2018, doi: 10.18653/v1/d18-1206.
N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “AR-miner: Mining informative reviews for developers from mobile app marketplace,” in Proceedings - International Conference on Software Engineering, May 2014, no. 1, pp. 767–778, doi: 10.1145/2568225.2568263.
E. C. Groen, J. Doerr, and S. Adam, “Towards Crowd-Based Requirements Engineering A Research Preview,” in Requirements Engineering: Foundation for Software Quality, 2015, pp. 247–253.
S. A. Licorish, B. T. R. Savarimuthu, and S. Keertipati, “Attributes that predict which features to fix: Lessons for app store mining,” ACM Int. Conf. Proceeding Ser., vol. Part F1286, pp. 108–117, 2017, doi: 10.1145/3084226.3084246.
H. P. Luhn, “The Automatic Creation of Literature Abstracts,” IBM J. Res. Dev., vol. 2, no. 2, pp. 159–165, 2010, doi: 10.1147/rd.22.0159.
K. S. Kalyan, A. Rajasekharan, and S. Sangeetha, “AMMUS : A Survey of Transformer-based Pretrained Models in Natural Language Processing,” pp. 1–42, 2021, [Online]. Available: http://arxiv.org/abs/2108.05542.
S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
A. M. and G. H. Alex Graves, “Speech Recognition with Deep Recurrent Neural Networks , Department of Computer Science, University of Toronto,” Dep. Comput. Sci. Univ. Toronto, vol. 3, no. 3, pp. 45–49, 2013, [Online]
Y. Kim, “Convolutional Neural Networks for Sentence Classification,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1746–1751, doi: 10.3115/v1/D14-1181.
V. Gupta and G. S. Lehal, “A Survey of Text Summarization Extractive techniques,” J. Emerg. Technol. Web Intell., vol. 2, no. 3, pp. 258–268, 2010, doi: 10.4304/jetwi.2.3.258-268.
N. Moratanch and S. Chitrakala, “A survey on extractive text summarization,” Int. Conf. Comput. Commun. Signal Process. Spec. Focus IoT, ICCCSP 2017, no. November, 2017, doi: 10.1109/ICCCSP.2017.7944061.
M. Allahyari et al., “Text Summarization Techniques: A Brief Survey,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 10, 2017, doi: 10.14569/ijacsa.2017.081052.
N. Moratanch and S. Chitrakala, “A survey on abstractive text summarization,” Proc. IEEE Int. Conf. Circuit, Power Comput. Technol. ICCPCT 2016, no. November, 2016, doi: 10.1109/ICCPCT.2016.7530193.
S. Gholamrezazadeh, M. A. Salehi, and B. Gholamzadeh, “A Comprehensive Survey on Text Summarization Systems.” doi: 10.1109/CSA.2009.5404226.
G. L. A. Babu and S. Badugu, “A Survey on Automatic Text Summarisation,” Lect. Notes Networks Syst., vol. 612, pp. 679–689, 2014, doi: 10.1007/978-981-19-9228-5_58.
R. Mishra et al., “Text summarization in the biomedical domain: a systematic review of recent research.,” J. Biomed. Inform., vol. 52, pp. 457–467, Dec. 2014, doi: 10.1016/j.jbi.2014.06.009.
N. Andhale and L. A. Bewoor, “An overview of text summarization techniques,” Proc. - 2nd Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2016, no. May, 2017, doi: 10.1109/ICCUBEA.2016.7860024.
J. R. Thomas, S. K. Bharti, and K. S. Babu, “Automatic keyword extraction for text summarization in e-newspapers,” ACM Int. Conf. Proceeding Ser., vol. 25-26-August-2016, 2016, doi: 10.1145/2980258.2980442.
M. Gambhir and V. Gupta, “Recent automatic text summarization techniques: a survey,” Artif. Intell. Rev., vol. 47, 2017, doi: 10.1007/s10462-016-9475-9.
W. S. El-Kassas, C. R. Salama, A. A. Rafea, and H. K. Mohamed, “Automatic text summarization: A comprehensive survey,” Expert Syst. Appl., vol. 165, no. November 2021, 2021, doi: 10.1016/j.eswa.2020.113679.
L. Abualigah, M. Q. Bashabsheh, H. Alabool, and M. Shehab, “Text Summarization: A Brief Review,” Stud. Comput. Intell., vol. 874, no. January, pp. 1–15, 2020, doi: 10.1007/978-3-030-34614-0_1.
M. Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,” CoRR, vol. abs/1910.1, Oct. 2019, doi: https://doi.org/10.48550/arXiv.1910.13461.
S. Narayan, S. B. Cohen, and M. Lapata, “Don’t give me the details, just the summary! Topic-aware convolutional neural networks for extreme summarization,” Proc. 2018 Conf. Empir. Methods Nat. Lang. Process. EMNLP 2018, pp. 1797–1807, 2018, doi: 10.18653/v1/d18-1206.
T. Hasan et al., “{XL}-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages,” in Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Aug. 2021, pp. 4693–4703, [Online]. Available: https://aclanthology.org/2021.findings-acl.413.
L. Basyal and M. Sanghvi, “Text Summarization Using Large Language Models: A Comparative Study of MPT-7b-instruct, Falcon-7b-instruct, and OpenAI Chat-GPT Models,” 2023, [Online]. Available: http://arxiv.org/abs/2310.10449.
C. C. Aggarwal and C. C. Aggarwal, Mining text data. Springer, 2015.
B. Srinivasa-Desikan, Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd, 2018.
C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in Text summarization branches out, 2004, pp. 74–81.
T. Hasan et al., “{XL}-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages,” in Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Aug. 2021, pp. 4693–4703, [Online]. Available: https://aclanthology.org/2021.findings-acl.413
L. Basyal and M. Sanghvi, “Text Summarization Using Large Language Models: A Comparative Study of MPT-7b-instruct, Falcon-7b-instruct, and OpenAI Chat-GPT Models,” 2023, [Online]. Available: http://arxiv.org/abs/2310.10449.
B. Srinivasa-Desikan, Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd, 2018.