تاثیر شش هفته تمرین مقاومتی بر عامل رشد اندوتلیال عروقی و عامل نوروتروفیک مشتق از عصب بافت قلبی در رتهای نر چاق
الموضوعات : فصلنامه زیست شناسی جانوریندا قاسمی 1 , مانیا روزبیانی 2 , حسین شیروانی 3
1 - گروه تربیت بدنی و علوم ورزشی، واحد بروجرد، دانشگاه آزاد اسلامی، بروجرد، ایران
2 - گروه تربیت بدنی و علوم ورزشی، واحد بروجرد، دانشگاه آزاد اسلامی، بروجرد، ایران
3 - مرکز تحقیقات فیزیولوژی ورزشی، پژوهشکده سبک زندگی، دانشگاه علوم پزشکی بقیهالله (عج)، تهران، ایران
الکلمات المفتاحية: چاقی, تمرین مقاومتی, رگزایی, عامل رشد اندوتلیال عروقی, عامل نوروتروفیک مشتق از عصب,
ملخص المقالة :
پدیده رگ زایی در شرایط پاتوفیزیولوژیکی مانند چاقی و شرایط فیزیولوژیکی مانند فعالیت ورزشی، اثرات متفاوتی را بر بدن دارد. هدف از مطالعه حاضر، بررسی اثر شش هفته تمرین مقاومتی بر عامل رشد اندوتلیال عروقی (VEGF) و عامل نوروتروفیک مشتق از عصب (NDNF) در رتهای نر چاق بود. در یک مطالعه تجربی، تعداد 20 سر رت نر نژاد ویستار با سن پنج هفته و وزن تقریبی 120 تا 160 گرم، بر اساس همگن سازی وزنی به دو گروه مساوی کنترل و تجربی تقسیم شدند. گروه تجربی پروتکل تمرینی به مدت شش هفته، سه جلسه در هفته و هر جلسه شامل یک نوبت 10 تکراری با تناوب استراحتی 90 ثانیه ای، بالارفتن از نردبان تمرینات مقاومتی به ارتفاع یک متر و شیب 85 درجه همراه با وزنه متصل به قاعده دم (با توجه به حداکثر ظرفیت حمل وزنه هر رت) را انجام دادند. 48 ساعت پس از آخرین جلسه تمرین، رتها کشته شده و خونگیری از قلب انجام گردید. مقادیر VEGF و NDNF در بافت قلب با استفاده از روش الایزا ارزیابی گردید. به منظور بررسی تغییرات بین گروهی از آزمون t مستقل و در سطح معناداری 05/0 >p استفاده شد. نتایج نشان داد شش هفته مداخله تمرین مقاومتی منجر به افزایش معنادار در مقادیر VEGF و کاهش معنادار NDNF در گروه تجربی نسبت به گروه کنترل گردید. بر اساس یافته های این مطالعه، به نظر می رسد تمرین مقاومتی می تواند با افزایش برخی عوامل محافظتی و کاهش عوامل بازدارنده آنژیوژنز، اثرات مثبتی بر پیشگیری از خطر بروز بیماری های قلبی عروقی ناشی از چاقی، به دنبال داشته باشد.
1- Bobik A. 2005. The structural Basis of hypertwnsion vascular remodelling, rare faction and angiogenesis /arteriogenesis. Journal of Hypertension, 23:1473-1475.
2- Boström P., Wu J., Jedrychowski M.P., Korde A., Ye L., Lo J.C. 2012. A PGC1-[agr]-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382):463-468.
3- Ceriello A., Quagliaro L., D’Amico M., Di Filippo C., Marfella R., Nappo F. 2002. Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat. Diabetes; 51(4):1076-1082.
4- Erekat N.S., Al-Jarrah M.D., Al Khatib A.J. 2014. Treadmill exercise training improves vascular endothelial growth Factor expression in the cardiac muscle of type I diabetic rats. Cardiology Research, 5(1):23.
5- Felmeden D., Blann A., Lip G. 2003. Angiogenesis: basic pathophysiology and implications for disease. European Heart Journal, 24(7):586-603.
6- Habibi Maleki A., Tofighi A., Ghaderi Pakdel F., Tolouei Azar J. 2020. The Effect of 12 Weeks of High Intensity Interval Training and High Intensity Continuous Training on VEGF, PEDF and PAI-1 Levels of Visceral and Subcutaneous Adipose Tissues in Rats fed with High Fat Diet. Sport Physiology and Management Investigations, 12(1):101-120.
7- Hanahan D., Weinberg R.A. 2011. Hallmarks of cancer: the next generation. Cell, 144:646-674
8- Joki Y., Ohashi K., Yuasa D., Shibata R., Kataoka Y., Kambara T., Ouchi N. 2015. Neuron-derived neurotrophic factor ameliorates adverse cardiac remodeling after experimental myocardial infarction. Circulation: Heart Failure, 8(2): 342-351.
9- Kivimaki M., Kuosma E., Ferrie J.E., Luukkonen R., Nyberg S.T., Alfredsson L. 2017. Overweight. obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health, 2:e277–85.
10- Kuang X.L., Zhao X.M., Xu H.F., Shi Y.Y., Deng J.B., Sun G.T. 2010. Spatio-temporal expression of a novel neuron-derived neurotrophic factor (NDNF) in mouse brains during development. BMC Neuroscience, 11(1):137-142.
11- Li S., Culver B., Ren J. 2003. Benefit and risk of exercise on myocardial function in diabetes. Pharmacological Research; 48(2):127-132
12- Lucas Cecin de D.S., Mateus B.S., Otávio Cortes A., Veloso V.B., Reis Abdalla D. 2020. Influence of Exercise or Physical Activity in the Angiogenesis Process: Integrative Review. Online Journal of Cardiology Research and Reports, 3(5):1-9
13- Mahrou M., Gaeini A.A., Javidi M., Chobbineh S. 2014. Change in stimulating factors of angiogenesis, indused by progressive resistance training in diabetic rats. Iranian journal of Diabetes and Metabolism, 14(1):1-8.
14- Marfella R., Esposito K., Nappo F., Siniscalchi M., Sasso F.C., Portoghese M. 2004. Expression of angiogenic factors during acute coronary syndromes in human type 2 diabetes. Diabetes, 53(9):2383-2391.
15- Matthews V.B., Astrom M.B., Chan M.H.S., Bruce C.R., Krabbe K.S., Prelovsek O. 2009. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia, 52:1409-1418
16- Ohashi K., Enomoto T., Joki Y., Shibata R., Ogura Y., Kataoka Y. 2014. Neuron-derived neurotrophic factor functions as a novel modulator that enhances endothelial cell function and revascularization processes. Journal of Biological Chemistry, 289(20):14132-14144.
17- Ouchi N., Ohashi K., Shibata R., Murohara T. 2016. Protective roles of adipocytokines and myokines in cardiovascular disease. Circulation Journal, 80:2073-2080.
18- Rahmani J., Kord-Varkaneh H., Hekmatdoost A. 2019. Body mass index and risk of inflammatory bowel disease: a systematic review and dose-response meta-analysis of cohort studies of over a million participants. Obesity Reviews, 20(9):1312-1320
19- Shirvani H., Arabzadeh E. 2018. Metabolic cross-talk between skeletal muscle and adipose tissue in high-intensity interval training vs. moderate-intensity continuous training by regulation of PGC-1α. Eating and Weight Disorders, 25(1):17-24.
20- Silva J.A., Santana E.T., Manchini M.T., Antonio E.L., Bocalini D.S., Krieger J.E., Tucci P.J., Serra A.J. 2014. Exercise training can prevent cardiac hypertrophy induced by sympathetic hyperactivity with modulation of kallikrein-kinin pathway and angiogenesis. PLoS One, 9:e91017.
21- Tahergorabi Z., Khazaei M. 2012. Imbalance of angiogenesis in diabetic complications: the mechanisms. International Journal of Preventive Medicine; 3(12):827.
22- Tang K., Xia F.C., Wagner P.D., Breen E.C. 2010. Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respiratory Physiology and Neurobiology; 170(1):16-22.
23- Tolouei Azar J., Ravasi A., Soori R., Akbarnejad A., Hemati Nafar M. 2017. The effect of 8 weeks aerobic training on angiogenesis (VEGF) and angiostatic (ES) factors in sedentary women. Stud Med Sci.; 27(12):1032-1040.
24- Ungvari Z., Tarantini S., Kiss T., Wren J.D., Giles C.B., Griffin C.T., Murfee W.L., Pacher P., Csiszar A. 2018. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nature Reviews Cardiology, 15:555-565
25- Way K.L., Hackett D.A., Baker M.K., Johnson N.A. 2016. The effect of regular exercise on insulin sensitivity in type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes and Metabolism Journal, 40(4):253-271.
26- Wood R.E., Sanderson B.E., Askew C.D., Walker P.J., Green S., Stewart I.B. 2006. Effect of training on the response of plasma vascularendothelial growth factor to exercise in patients with peripheralarterial disease. Clinical Sciences (London), 111:401-409.
27- Yoon Y.S., Uchida S., Masuo O., Cejna M., Park J.S., Gwon H.C. 2005. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation, 111(16):2073-2085
_||_