اثر فلاونوئید تام اندام هوایی گیاه حرا (Avicennia marina) بر میزان Bax، Bcl-2 و شاخص های استرس اکسیداتیو اسپرم اپیدیدیمی موش های صحرایی دیابت نوع یک
الموضوعات :
فصلنامه زیست شناسی جانوری
راهله رهباریان
1
1 - گروه زیستشناسی، دانشکده علوم، دانشگاه پیام نور، تهران، ایران
تاريخ الإرسال : 30 السبت , شوال, 1444
تاريخ التأكيد : 05 الأحد , محرم, 1445
تاريخ الإصدار : 10 الثلاثاء , شعبان, 1445
الکلمات المفتاحية:
موش صحرایی,
دیابت,
آپوپتوزیس,
اسپرم,
حرا,
ملخص المقالة :
دیابت دستگاه تولید مثلی را تحت تاثیر قرار می دهد و سبب اختلالات باروری در این بیماران می شود. با توجه به خواص آنتی اکسیدانی و هیپوگلیسمیک گیاه حرا، هدف از این مطالعه تعیین اثر فلاونوئید تام اندام هوایی گیاه حرا بر میزان Bax، Bcl-2 و شاخص های استرس اکسیداتیو اسپرم اپیدیدیمی موش های صحرایی دیابت نوع یک می باشد. در این مطالعه تجربی 32 سر موش صحرایی نر نژاد ویستار به گروه های مساوی شاهد، شاهد دیابتی و دو گروه دیابتی تحت تیمار تقسیم شدند. گروه های دیابتی تحت تیمار به مدت 30 روز غلظت های 50 و 100 میلی گرم/کیلوگرم فلاونوئید برگ گیاه حرا دریافت نمودند. در پایان دوره درمان اسپرم ها از اپیدیدیم استخراج شدند. سپس میزان Bax، Bcl-2، مالون دی آلدئید همچنین میزان آنزیم های سوپراکسید دیسموتاز، گلوتاتیون پراکسیداز و کاتالاز در نمونه های اسپرم و همچنین قند خون ناشتا و میزان 8 هیدروکسی 2 داکسی گوانوزین (HOdG) در نمونه های مورد بررسی توسط روش الایزا سنجش شد. با توجه به نتایج به دست آمده، میزان Bcl-2، سوپراکسید دیسموتاز، گلوتاتیون پراکسیداز و کاتالاز در نمونه های اسپرم موش های صحرایی دیابتی تحت تیمار با غلظت های 50 و 100 میلی گرم/کیلوگرم فلاونوئید برگ گیاه حرا در مقایسه با گروه شاهد دیابتی به صورت وابسته به دوز تزریقی به طور معنی داری افزایش و سطوح Bax و مالون دی آلدئید، FBS و HOdG به طور معنی داری کاهش یافت (05/0 >p ). تجویز فلاونوئید برگ گیاه حرا سبب کاهش آپوپتوزیس و استرس اکسیداتیو در اسپرم موش های صحرایی دیابتی نوع یک می شود.
المصادر:
Agati G., Azzarello E., Pollastri S., Tattini M. 2012. Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, 196:67-76.
Amaral S., Moreno A.J., Santos MS., Seiça R., Ramalho-Santos J. 2006. Effects of hyperglycemia on sperm and testicular cells of Goto-Kakizaki and streptozotocin-treated rat models for diabetes. 66(9): 2056-2067.
Arenas-Ríos E., Rosado García A., Cortés-Barberena E., Königsberg M., Arteaga-Silva M., Rodríguez-Tobón A. 2016. Reactive oxygen species production and antioxidant enzyme activity during epididymal sperm maturation in Corynorhinus mexicanus Reproductive Biology, 16(1):78-86.
Babu P.V., Liu D., Gilbert E.R. 2013. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. Journal of Nutritional Biochemistry, 24(11):1777-1789.
Chu Y., Sun J., Wu X., Liu R.H. 2002. Antioxidant and antiproliferative activities of common vegetables. Journal of Agricultural and Food Chemistry, 50(23): 6910-6916.
Davì G., Falco A., Patrono C. 2005. Lipid peroxidation in diabetes mellitus. Antioxidants and Redox Signaling, 7(1-2):256-268.
De Lamirande E., O'Flaherty C. 2008. Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta,. 1784(1):106-115.
Ding G. L., Liu Y., Liu M. E., Pan J.X., Guo M.X., Sheng J.Z., Huang H.F. 2015. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian Journal of Andrology, 17(6):948-953.
Fathi-Moghaddam H., Mokhtari M., Kamaei L., Ahangar-pour A. 2011. Effects of Avicennia marina leaves aqueous and hydro alcoholic extract on streptozotocin-induced diabetic male rats. Journal of Rafsanjan University of Medical Sciences, 10(4):245-254.
Franco R., Sánchez-Olea R., Reyes-Reyes E.M., Panayiotidis M.I., 2009. Environmental toxicity, oxidative stress and apoptosis: ménage à trois. Mutation Research, 674(1-2):3-22.
Gholami M., Mirazi N. 2016. Study of hepato protective effects of Avicennia marina hydroethanolic leaves extract in male rats induced with carbone tetrachloride. Armaghane Danesh. 20(10):858-872.
Gomes I.B., Porto M.L., Santos M.C., Campagnaro B.P., Pereira T.M., Meyrelles S.S. 2014. Renoprotective, anti-oxidative and anti-apoptotic effects of oral low-dose quercetin in the C57BL/6J model of diabetic nephropathy. Lipids in Health and Diseases, 13:184.
Ighodaro O.M., Adeosun A.M., Akinloye O.A. 2017. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina (Kaunas). 53(6):365-374.
Kanter M., Aktas C., Erboga M. 2012. Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin-induced diabetic rat testis. Food Chemistry and Toxicology, 50(3-4):719-725.
Khaki A., Fathiazad F., Nouri M., Khaki A., Ghanbari Z., Ghanbari M. 2011. Anti-oxidative effect of Citro flavonoids on spermatogenesis in rat. African Journal of Pharmacy and Pharmacology, 5(6):721-725.
Khaki A., Fathiazad F., Nouri M., Khaki A., Maleki N.A., Khamnei H.J. 2010. Beneficial effects of quercetin on sperm parameters in streptozotocin-induced diabetic male rats. Phytotherapy Research, 24(9):1285-1291.
Koh P.O. 2007. Streptozotocin-induced diabetes increases apoptosis through JNK phosphorylation and Bax activation in rat testes. Journal of Veterinary Science, 69(9):969-971.
La Vignera S., Condorelli R., Vicari E., D'Agata R., Calogero A.E. 2012. Diabetes mellitus and sperm parameters. Journal of Andrology, 33(2):145-153.
Laulier C., Lopez B.S. 2012. The secret life of Bcl-2: apoptosis-independent inhibition of DNA repair by Bcl-2 family members. Mutation Research, 751(2):247-257.
Lemelman MB, Letourneau L, Greeley SAW. 2018 Neonatal Diabetes Mellitus: An Update on Diagnosis and Management. Clinical Perinatology, 45(1): 41-59.
Lee J., Ma K., Moulik M., Yechoor V. 2018. Untimely oxidative stress in β-cells leads to diabetes - Role of circadian clock in β-cell function. Free Radical Biology and Medicine, 119:69-74.
Maes M.E., Schlamp C.L., Nickells R.W. 2017. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Progress in Retinal and Eye Research, 57: 1-25.
Navarro-Casado L., Juncos-Tobarra M. A., Cháfer-Rudilla M., de Onzoño L. Í., Blázquez-Cabrera J.A., Miralles-García J. M., 2010. Effect of experimental diabetes and STZ on male fertility capacity, Study in rats. Journal of Andrology, 31(6):584-592.
O'Flaherty C., de Lamirande E., Gagnon C. 2006. Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med. 41(4):528-540
Pergialiotis V., Prodromidou A., Frountzas M., Korou L.M., Vlachos G.D., Perrea D. 2016. Diabetes mellitus and functional sperm characteristics: A meta-analysis of observational studies. J Diabetes Complications. 30(6):1167-1176.
Purdy P.H., Ericsson S.A., Dodson R.E., Sternes K.L., Garner D.L. 2004. Effects of the flavonoids, silibinin and catechin, on the motility of extended cooled caprine sperm. Small Ruminant Research, 55(1-3):239-243.
Renault T.T., Dejean L.M., Manon S. 2017. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mechanisms of Ageing and Development, 161(Pt B):201-210.
Rochette L., Zeller M., Cottin Y., Vergely C. 2014. Diabetes, oxidative stress and therapeutic strategies. Biochimica et Biophysica Acta, 1840(9):2709-2729.
Roessner C., Paasch U., Kratzsch J., Glander H.J., Grunewald S. 2012. Sperm apoptosis signalling in diabetic men. Reproductive BioMedicine Online, 25(3): 292-299.
Saenger P., West P.W. 2018. Phenotypic variation of the mangrove species Avicennia marina (Forssk.) Vierh. From seven provenances around Australia. Aquatic Botany, 149:28-32.
Sharaf M., El-Ansari M. A., Saleh N. A. M. 2000. New flavonoids from Avicennia marina. Fitoterapia, 71(3):274-277.
Shrilatha B., Muralidhara. A. 2007. Early oxidative stress in testis and epididymal sperm in streptozotocin-induced diabetic mice: its progression and genotoxic consequences. Reproductive Toxicology, 23(4):578-587.
Soleimani Z., Mirazi N. 2015. The Effect of Avicennia marina hydroethanolic leaf extract on testes tissue and spermatogenesis in male rats induced with carbon tetrachloride. Armaghane Danesh, 20(8):677-688.
Thatoi H.N., Patra J.K., Das S.K. 2014. Free radical scavenging and antioxidant potential of mangrove plants: a review. Acta Physiologiae Plantarum, 36(3): 561-579.
Wang T., Li Q., Bi K. 2018. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. AJPS, 13(1):12-23.
Wang Y., Zhu H., Yee Tam N.F. 2014. Effect of a polybrominated diphenyl ether congener (BDE-47) on growth and antioxidative enzymes of two mangrove plant species, Kandelia obovata and Avicennia marina, in South China. Marine Pollution Bulletin, 85(2):376-84.
Wright C., Milne S., Leeson H. 2014. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reproductive Biomedicine Online, 28(6):684-703.
Zamani Gandomani M., Forouzandeh Malati E. 2014. Antinociceptive effect of extract of mangrove (Avicennia marina) in male rats. MJTUOMS, 36(1):34-39.
Zamani Gandomani M., Forouzandeh Molaali E., Zamani Gandomani Z., Madani H., Jamal Moshtaghian S. 2012. Evaluation of Anti-inflammatory effect of hydroalcoholic extract of mangrove (Avicennia marina) leaves in male rats. MJTUOMS, 34(4):80-85.
_||_