اثر تمرین استقامتی قبل از القای آلزایمر بر یادگیری، حافظه و تغییرات گاما سکرتاز هیپوکمپ در رت های نر نژاد ویستار
الموضوعات : فصلنامه زیست شناسی جانوریسجاد رجبی امیری 1 , علیرضا براری 2 , احمد عبدی 3
1 - گروه فیزیولوژی ورزشی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
2 - گروه فیزیولوژی ورزشی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
3 - گروه فیزیولوژی ورزشی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
الکلمات المفتاحية: بیماری آلزایمر, هیپوکمپ, گاما سکرتاز, یادگیری و حافظه,
ملخص المقالة :
این پژوهش با هدف بررسی اثر تمرین استقامتی قبل القای آلزایمر بر یادگیری، حافظه و تغییرات گاماسکرتاز هیپوکمپ موش های نر نژاد ویستار انجام شد. 32 سر رت نر بالغ 8 هفته ای با میانگین وزنی 17 ± 250 گرم، قبل از القای آلزایمر به صورت تصادفی به دو گروه استراحت (16 سر) و تمرین (16 سر) تقسیم شدند. پس از 4 هفته (هفته اول و دوم با سرعت 10 متر بر دقیقه در دو نوبت 15 دقیقهای، هفته سوم با سرعت 15 متر بر دقیقه در سه نوبت 15 دقیقهای و در هفته چهارم با سرعت 15 متر بر دقیقه در چهار نوبت 15 دقیقهای با وقفه 5 دقیقهای)، هر گروه به دو زیرگروه: 1- تزریق آمیلوئیدبتا و 2- بدون تزریق تقسیم شدند. پس از 72 ساعت حیوانات کشته و هیپوکمپ آنها جهت بررسی برداشته شد. تغییرات گاما سکرتاز با روش Real Time PCR اندازه گیری و اطلاعات با آزمون آنوا یک طرفه تجزیه و تحلیل گردید. در تست یادگیری و حافظه موریس بین زمان سپری شده برای یافتن سکو در گروه های مختلف در روزهای دوم (001/0 ≥p ، 758/10 = F)، سوم (001/0 ≥ p، 574/10 = F) و چهارم (001/0 ≥p ، 846/4 = F) تفاوت معنی داری وجود داشت. مدت زمان سپری شده برای یافتن سکو در گروه استراحت-تزریق Aβ1-42 در همه ی روزها به طور معنی داری بیشتر از گروه های دیگر بود (001/0≥p ). نتایج آزمون پروب (حافظه فضایی) نشان داد، زمان صرف شده در ربع دایره هدف برای گروه های مختلف به طور معنی داری متفاوت است (001/0 ≥p ، 245/9 = F). همچنین، گاما سکرتاز در گروه تمرین نسبت به گروه استراحت در مرحله بعد از القای آلزایمرکاهش معناداری را نشان داد (001/0=p ). تمرین هوازی قبل از القای آلزایمر منجر به کاهش گاما سکرتاز و افزایش یادگیری و حافظه و از این طریق امکان دارد به شکل پذیری هیپوکامپی کمک و فوایـد شـناختی و عملکردی در پی داشته باشد.
- Adlard P.A., Perreau V.M., Pop V., Cotman C.W. 2005. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. Journal of Neuroscience, 25(17): 4217-4221.
- Aguiar A.S., Castro A.A., Moreira E.L., Glaser V., Santos A.R., Tasca C.I., PredigerR.D. 2011. Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling. Mech Ageing Dev, 132(11-12): 560-567.
- Brouillette J., Caillierez R., Zommer N., Alves-Pires C., Benilova I., Blum D., Buée L. 2012. Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β1–42 oligomers are revealed in vivo by using a novel animal model. Journal of Neuroscience, 32(23): 7852-7861.
- Burger C. 2010. Region-specific genetic alterations in the aging hippocampus: implications for cognitive aging. Frontiers in Aging Neuroscience, 2: 1-12.
- Cotman C.W., Berchtold N.C. 2002 Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in neurosciences, 25(6): 295-301.
- Cracchiolo J.R., Mori T., Nazian S.J., Tan J., Potter H., Arendash G.W. 2007. Enhanced cognitive activity-over and above social or physical activity-is required to protect Alzheimer’s mice against cognitive impairment, reduce Aβ deposition, and increase synaptic immunoreactivity. Neurobiology of Learning and Memory, 88(3): 277-294.
- Dao A.T., Zagaar M.A., Alkadhi K.A. 2015. Moderate treadmill exercise protects synaptic plasticity of the dentate gyrus and related signaling cascade in a rat model of Alzheimer’s disease. Molecular Neurobiology, 52(3): 1067-1076.
- Erickson K.I., Voss M.W., Prakash R. S., Basak C., Szabo A., Chaddock L., Kramer A.F. 2011. Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of USA, 108(7): 3017-3022.
- Gandy S. 2005. The role of cerebral amyloid β accumulation in common forms of Alzheimer disease. Journal of Clinical Investigation, 115(5): 1121-1129.
- Ghonsulakandi S.H., Sheikh M., Shasaltaneh M.D., Chopani S., Naghdi N. 2017. The association between effective dose of magnesium and mild compulsive exercise on spatial learning, memory, and motor activity of adult male rats. Biological Trace Element Research, 178(2): 235-245.
- Haass C., Selkoe D.J. 2007. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature reviews Molecular Cell Biology, 8(2): 101-112.
- Hansson O., Zetterberg H., Buchhave P., Andreasson U., Londos E., Minthon L., Blennow K. 2007. Prediction of Alzheimer’s disease using the CSF Aβ42/Aβ40 ratio in patients with mild cognitive impairment. Dementia and Ggeriatric Cognitive Disorders, 23(5): 316-320.
- Jan A., Hartley D.M., Lashuel H.A. 2010. Preparation and characterization of toxic Aβ aggregates for structural and functional studies in Alzheimer's disease research. Nature Protocols, 5(6): 1186-1209.
- Jiang S., Li Y., Zhang X., Bu G., Xu H., Zhang Y.W. 2014. Trafficking regulation of proteins in Alzheimer’s disease. Molecular Neurodegeneration, 9(1): 6.
- Kang E.B., Kwon I.S., Koo J.H., Kim E.J., Kim C.H., Lee J., Cho J.Y. 2013. Treadmill exercise represses neuronal cell death and inflammation during Aβ-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis, 18(11): 1332-1347.
- Kang E.B., Cho J.Y. 2014. Effects of treadmill exercise on brain insulin signaling and β-amyloid in intracerebroventricular streptozotocin induced-memory impairment in rats. Journal of exercise Nutrition and Biochemistry, 18(1): 89-96.
- Kodali M., Megahed T., Mishra V., Shuai B., Hattiangady B., Shetty A.K. 2016. Voluntary running exercise-mediated enhanced neurogenesis does not obliterate retrograde spatial memory. Journal of Neuroscience, 36(31): 8112-8122.
- Liang K.Y., Mintun M.A., Fagan A. M., Goate A.M., Bugg J.M., Holtzman D.M., Morris J.C., Head D. 2010. Exercise and Alzheimer's disease biomarkers in cognitively normal older adults. Annuals of Neurology, 68(3): 311-318.
- Liu H.l., Zhao G., Zhang H. 2013. Long-term treadmill exercise inhibits the progression of Alzheimer's disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice. Behavior and Brain Research, 256: 261-272.
- Nath S., Agholme L., Kurudenkandy F.R., Granseth B., Marcusson J., Hallbeck M. 2012. Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid. Journal of Neuroscience, 32(26): 8767-8777.
- O'Brien R.J., Wong P.C. 2011. Amyloid precursor protein processing and Alzheimer's disease. Annual review of Neuroscience, 34: 185-204.
- Parachikova A., Nichol K., Cotman C. 2008. Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiological Disease, 30(1): 121-129.
- Puzzo D., Sapienza S., Arancio O., Palmeri A. 2008. Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatric Disease and Treatment, 4(2): 371-387.
- Reuben D.B., Judd‐Hamilton L., Harris T.B., Seeman T.E. 2003. The Associations Between Physical Activity and Inflammatory Markers in High‐Functioning Older Persons: MacArthur Studies of Successful Aging. Journal of the American Geriatrics Society, 51(8): 1125-1130.
- Rolland Y., Abellan van Kan G., Vellas B. 2010. Healthy brain aging: role of exercise and physical activity. Clinics in Geriatric Medicine, 26(1): 75-87.
- Shahed, A., Ravasi, A. A., Choubineh, S., & Khodadadi, D. 2018. Effect of Four Weeks Exercise Prior Preparation before Alzheimer's Induction on the Levels of Nerve Growth Factor and Beta Amyloid in the Hippocampus of Wistar Male Rats. Journal of Arak University of Medical Sciences, 20(11): 56-66.
- Soheili Kashani M., Salami M., Rezaei Tavirani M., Talaei Zavareh S.A. 2010. Maze training improves learning in an Alzheimer model of rat. Feyz Journal of Kashan University of Medical Sciences, 14(3): 209-216.
- Souza L.C., Filho C.B., Goes A.T., Del Fabbro L., de Gomes M.G., Savegnago L., Oliviera M.S., Jesse C.R. 2013. Neuroprotective effect of physical exercise in a mouse model of Alzheimer’s disease induced by β-amyloid 1–40 peptide. Neurotoxicity Research, 24(2): 148-163.
- Storey E., Cappai R. 1999. The amyloid precursor protein of Alzheimer's disease and the Abeta peptide. Neuropathology and Applied Neurobiology, 25(2): 81-97.
- Stranahan A.M., Lee K., Becker K.G., Zhang Y., Maudsley S., Martin B., Cutler R.G., Mattson M.P. 2010. Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice. Neurobiology of Aging, 31(11): 1937-1949.
- Voss M.W., Prakash R.S., Erickson, K.I., Basak C., Chaddock L., Kim J.S., Kramer A.F. 2010. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2: 1-17
- Yuede C.M., Zimmerman S.D., Dong H., Kling M.J., Bero A.W., Holtzman D.M., Timson B.F., Csernansky J.G. 2009. Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer's disease. Neurobiology of Disease, 35(3): 426-432.
- Zagaar M., Alhaider I., Dao A., Levine A., Alkarawi A., Alzubaidy M., Alkadhi K. 2012. The beneficial effects of regular exercise on cognition in REM sleep deprivation: behavioral, electrophysiologi cal and molecular evidence. Neurobiology of Disease, 45(3): 1153-1162.