بررسی خواص سایشی و رادیواپسیته ایمپلنت پلی اتر اتر کتون پوشش دهی شده با اکسید استرانسیم برای درمان پارگی رباط صلیبی قدامی
الموضوعات :
1 - مدیرگروه کارشناسی ارشد مهندسی پزشکی دانشگاه ازاد اسلامی واحد یزد
الکلمات المفتاحية: پوشش دهی, رادیواپسیته, لیگامان صلیبی قدامی, پلی اتر اتر کتون, اکسید استرانسیم,
ملخص المقالة :
یکی از شایعترین مراجعات درمانگاهی ارتوپدی، تروماهای مستقیم و غیرمستقیم به زانو است که سبب پارگی لیگامان صلیبی قدامی میشود. کاربرد ایمپلنت از جنس تیتانیوم یکی از راه های بازسازی لیگامان صلیبی است که دارای محدودیت هایی از جمله رهایش یون ها ی سمی مانند وانادیوم و آلومینیوم از آلیاژ تیتانیوم می باشد. بنابراین در این مطالعه، ایمپلنت از جنس پلیمر پلی اتر اتر کتون (PEEK) با دستگاه CNC ساخته شد و سطح ایمپلنت با اکسید استرانسیم(SrO) برای ساخت یک ایمپلنت پلیمری رادیواپک پوشش دهی شد. پوشش دهی سطح ایمپلنت پلیمری با روش پوشش دهی چرخشی -غوطه وری در دو شرایط متفاوت دمایی در دمای محیط و دمای ℃ ۷۰ انجام شد. سپس خواص سایشی و سطحی ایمپلنت مورد ارزیابی قرار گرفت. مورفولوژی سطح، ریزساختار و توزیع عناصر روی سطح ایمپلنت به ترتیب توسطEDS، XRD، SEM و آنالیز MAP ارزیابی گردید. مشاهده تصاویر رادیوگرافی واضح از ایمپلنت PEEK با پوششSrO دلیلی بر رادیواپک شدن ایمپلنت پلیمری بود. میزان کاهش وزن برای ایمپلنت PEEK و ایمپلنت PEEK با پوشش SrO در سیکل ۱۵۰۰ مرتبه به ترتیب ۰۰۰۶/۰ گرم و ۰۰۰۴/۰ گرم محاسبه گردید.مقاومت سایشی مناسب در دو سیکل ۵۰۰ و ۱۵۰۰ مرتبه برای منافذ و سطح ایمپلنت PEEK با پوشش SrO مشاهده شد. نتایج آزمون کشت سلول و رنگ آمیزیlive/dead،د۹۸٪ رشد و تکثیر سلولها را بر روی سطح ایمپلنت PEEK با پوشش SrO نشان داد. بنابراین یافته های این تحقیق نشان داد که ایمپلنت PEEK با پوشش SrO می تواند به عنوان یک جایگزین مناسب برای ایمپلنت اندوباتون به کار رود.
۶- مراجع
[1] E. Stodolak-Zych, K. Ficek, J. Wieczorek, M. Kajor, K. Gryń, A. Rapacz-Kmita, J. Rajca, Y. Kosenyuk, M. Stolarz & S. Błażewicz, "Assessment of sheep knee joint after ACL replacement with Achilles tendon autograft and PLA-based implant", Journal of the Mechanical Behavior of Biomedical Materials, vol. 12, p. 104923, 2022.
[2] D. Dimitriou, D. Zou, Z. Wang, N. Helmy & T.-Y. Tsai, "3T MRI-based anatomy of the anterolateral knee ligament in patients with and without an ACL-rupture: Implications for anatomical anterolateral ligament reconstruction", The Knee, vol. 29. pp. 390-398, 2021.
[3] M. Husen, R. J. Custers, A. J. Krych & D. B. Saris, "Autologous chondrocyte implantation for treatment of articular cartilage defects in the knee and ankle of football (soccer) players", Journal of Cartilage & Joint Preservation, p. 100059, 2022.
[4] T. Zumbrunn, K. M. Varadarajan, H. E. Rubash, H. Malchau, G. Li & O. K. Muratoglu, "Regaining native knee kinematics following joint arthroplasty: a novel biomimetic design with ACL and PCL preservation", The Journal of arthroplasty, vol. 30, no.12. pp. 2143-2148, 2015.
[5] A. Vijay, D. K. Bairwa, R. Goel & A. Gupta, "A novel technique for posterior cruciate ligament tibial avulsion fixation through the burks and schaffer approach", Journal of Orthopedics, Traumatology and Rehabilitation, vol. 14, no.1. p. 81, 2022.
[6] M. A. Cordunianu, I. Antoniac, M. Niculescu, G. Paltanea, A. D. Raiciu, H. Dura, N. Forna, I. D. Carstoc & M.B. Cristea, "Treatment of Knee Osteochondral Fractures", Healthcare, MDPI, p. 1061.2022,
[7] M. Mahmoodi, M. H. Hydari, L. Mahmoodi, L. Gazanfari & M. Mirhaj, "Electrophoretic deposition of graphene oxide reinforced hydroxyapatite on the tantalum substrate for bone implant applications: In vitro corrosion and bio-tribological behavior", Surface and Coatings Technology, vol. 424, p. 127642, 2021.
[8] M. Mahmoodi, P. M. Hashemi & R. Imani, "Characterization of a novel nanobiomaterial fabricated from HA, TiO 2 and Al 2 O 3 powders: an in vitro study", Progress in biomaterials. vol. 3, no.1, p. 25, 2014.
[9] M. Khosroshahi, M. Mahmoodi, H. Saeedinasab & M. Tahriri, "Evaluation of mechanical and electrochemical properties of laser surface modified Ti–6Al–4V for biomedical applications: in vitro study", Surface engineering, vol. 24, no. 3, pp. 209-218, 2008.
[10] M. Mahmoodi, P. M. Hashemi, Rana Imani & J. Iqbal, "In vitro evaluation and elecrochemical analysis of hydroxyapatite /tantalum nanolyer coatings on Ti-6Al-4V implants for orthopedic applications", Journal of Corrosion Science and Engineering, vol. 23, p. 38, 2020.
[11] A. Suryavanshi, V. Borse, V. Pawar, S. Kotagudda Ranganath & R. Srivastava, "Material advancements in bone-soft tissue fixation devices", Sci. Adv. Today. vol. 2, p. 25236, 2016.
[12] N. A. Z. Abidin, A. abdul Wahab, M. H. Ramlee & M. R. A. Kadir, "A Mini Review on Graft Fixation Devices for Anterior Cruciate Ligament Reconstruction-Techniques", Materials and Complications, 2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), IEEE, pp. 93-98, 2018.
[13] X. Ji, M. Zhao, L. Dong, X. Han & D. Li, "Influence of Ag/Ca ratio on the osteoblast growth and antibacterial activity of TiN coatings on Ti-6Al-4V by Ag and Ca ion implantation", Surface and Coatings Technology, vol. 403, pp. 126415, 2020.
[14] E. A. Esfahani, O. Bukuaghangin, S. Banfield, Y. Vangölü, L. Yang, A. Neville, R. Hall & M. Bryant, "Surface engineering of wrought and additive layer manufactured Ti-6Al-4V alloy for enhanced load bearing and bio-tribocorrosion applications", Surface and Coatings Technology p.442, 128139, 2022.
[15] N. Alotaibi, K. Naudi, D. Conway & A. Ayoub, "The current state of peek implant osseointergration and future perspectives: a systematic review", European Cells and Materials, vol. 40, pp. 1-20, 2020.
[16] J. Ortega-Martínez, M. Farré-Lladós, J. Cano-Batalla & J. Cabratosa-Termes, "Polyetheretherketone (PEEK) as a medical and dental material. A literature review", Medical Research Archives, vol. 5, no. 4, 2017.
[17] S. Sarfraz, P.-H. Mäntynen, M. Laurila, S. Rossi, J. Leikola, M. Kaakinen, J. Suojanen & J. Reunanen, "Comparison of Titanium and PEEK Medical Plastic Implant Materials for Their Bacterial Biofilm Formation Properties", Polymers, vol. 14, no.18, p. 3862, 2022.
[18] W. Mróz, B. Budner, R. Syroka, K. Niedzielski, G. Golański, A. Slósarczyk, D. Schwarze & T. E. Douglas, "In vivo implantation of porous titanium alloy implants coated with magnesium‐doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion", Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 103, no.1, pp. 151-158, 2015.
[19] I. Ratha, P. Datta, V. K. Balla, S. K. Nandi & B. Kundu, "Effect of doping in hydroxyapatite as coating material on biomedical implants by plasma spraying method: A review", Ceramics International, vol. 47, no. 4, pp. 4426-4445, 2021.
[20] N. Shokri, M. S. Safavi, M. Etminanfar, F. C. Walsh & J. Khalil-Allafi, "Enhanced corrosion protection of NiTi orthopedic implants by highly crystalline hydroxyapatite deposited by spin coating: The importance of pre-treatment", Materials Chemistry and Physics, vol. 259, p. 124041, 2021.
[21] M. Tyona, "A theoritical study on spin coating technique", Advances in materials Research, vol. 2. no.4, p.195, 2013.
[22] M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing & J. A. Switzer, "Spin coating epitaxial films", Science, vol. 364, no. 6436, pp. 166-169, 2019.
[23] B.-J. Kim, S.-H. Han & J.-S. Park, "Properties of CNTs coated by PEDOT: PSS films via spin-coating and electrophoretic deposition methods for flexible transparent electrodes", Surface and Coatings Technology, vol. 271, pp. 22-26, 2015.
[24] N. Nankali, A. Moghanian & M. Saghafi Yazdi, "Investigation of the Effect of Strontium Ion Content on Thermal, Bioactivity, Antibacterial Properties and Behavior of MC3T3-E1 Osteoblast Cells in Silicate-Based Bioactive Glass", Advanced Processes in Materials Engineering, vol.15, no. 3, pp. 81-95, 2021.
[25] E. Carvalho, D. De Paula, D. A. Neto, L. Costa, D. Dias, V. Feitosa & P. Fechine, "Radiopacity and mechanical properties of dental adhesives with strontium hydroxyapatite nanofillers", Journal of the mechanical behavior of biomedical materials, vol. 101, p. 103447, 2020.
[26] T. Wu, S. Yang, T. Lu, F. He, J. Zhang, H. Shi, Z. Lin & J. Ye, "Strontium ranelate simultaneously improves the radiopacity and osteogenesis of calcium phosphate cement", Biomedical Materials, vol. 14, no. 3, p. 035005, 2019.
[27] M. Bianchi, L. Degli Esposti, A. Ballardini, F. Liscio, M. Berni, A. Gambardella, S. C. Leeuwenburgh, S. Sprio, A. Tampieri & M. Iafisco, "Strontium doped calcium phosphate coatings on poly (etheretherketone) (PEEK) by pulsed electron deposition", Surface and Coatings Technology, vol. 319, pp. 191-199, 2017.
[28] J. W. Durham III & A. Rabiei, "Deposition, heat treatment and characterization of two layer bioactive coatings on cylindrical PEEK", Surface and coatings technology, vol. 301. pp. 106-113, 2016.
[29] Y. Deng, P. Zhou, X. Liu, L. Wang, X. Xiong, Z. Tang, J. Wei & S. Wei, "Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite /carbon fiber ternary biocomposite", Colloids and Surfaces B: Biointerfaces, vol. 136, pp. 64-73, 2015.
[30] M. He, Y. Huang, H. Xu, G. Feng, L. Liu, Y. Li, D. Sun & L. Zhang, "Modification of polyetheretherketone implants: From enhancing bone integration to enabling multi-modal therapeutics", Acta Biomaterialia, vol. 129, pp. 18-32, 2021.
[31] A. Furukawa, S. Kawasaki, M. Akahane & Y. Tanaka, "Fabrication of bioactive poly (ether ether ketone) by laser melt infiltration of poly (ether ether ketone) inside the strontium apatite coatings", Materials Chemistry and Physics, vol. 288, p. 126352, 2022.
[32] C. Wang, S. Wang, Y. Yang, Z. Jiang, Y. Deng, S. Song, W. Yang & Z.-G. Chen, "Bioinspired, biocompatible and peptide-decorated silk fibroin coatings for enhanced osteogenesis of bioinert implant", Journal of Biomaterials Science, Polymer Edition, vol. 29, no. 13, pp. 1595-1611, 2018.
[33] H. Canada, "Strontium in Drinking Water—Guideline Technical Document for Public Consultation, " Health Canada Ottawa, ON, Canada, 2018.
[34] H. Zhang, X. Zhou, L. Wang, W. Wang & J. Xu, "Concentrations and potential health risks of strontium in drinking water from Xi'an", Northwest China, Ecotoxicology and environmental safety, vol.164, pp.181-188, 2018.
[35] J. Song, Z. Liao, H. Shi, D. Xiang, Y. Liu, W. Liu & Z. Peng, "Fretting wear study of PEEK-based composites for bio-implant application", Tribology Letters, vol. 65, no.4, pp. 1-11, 2017.
[36] S. Sarmin, B. Tarek, B. Rengaraju, K. Rezaul Karim, H. Ong, H. Abdullah & M. Khan, "Palm oil derived alkyd resin synthesis catalyzed by SrO/Sr (OH) 2 nanoparticles", J. Crit. Rev., vol. 7, pp. 2131-2139, 2020.
[37] G. Apsana, P. George, N. Devanna & R. Yuvasravana, "Biomimetic synthesis and antibacterial properties of strontium oxide nanoparticles using Ocimum sanctum leaf extract", Asian J. Pharm. Clin. Res., vol.11, no. 3, pp. 384-389, 2018.
[38] H. Lashgari, A. Sufizadeh & M. Emamy, "The effect of strontium on the microstructure and wear properties of A356–10% B4C cast composites", Materials & Design, vol. 31, no.4, pp. 2187-2195, 2010.
[39] S.-L. Lee, Y.-C. Cheng, W.-C. Chen, C.-K. Lee & A.-H. Tan, "Effects of strontium and heat treatment on the wear-corrosion property of Al–7Si–0.3 Mg alloy", Materials Chemistry and Physics, vol. 135, no. 2-3, pp. 503-509, 2012.
[40] A. Moghanian, M. Raz & F. Moztarzadeh, "Comparative study of the effects of strontium and magnesium ions on physical and chemical properties of calcium phosphate-gelatin biomimetic scaffolds in bone tissue engineering", Advanced Processes in Materials Engineering, vol. 16, no.1, pp. 11-26, 2022.
[41] V. Nardone, R. Zonefrati, C. Mavilia, C. Romagnoli, S. Ciuffi, S. Fabbri, G. Palmini, G. Galli, A. Tanini & M. Brandi, "In vitro effects of strontium on proliferation and osteoinduction of human preadipocytes", Stem Cells International, vol. 2015, p. 871863, 2015.
[42] H. S. Ningsih, Y.-C. Liu, J.-W. Chen & Y.-J. Chou, "Effects of strontium dopants on the in vitro bioactivity and cytotoxicity of strontium-doped spray-dried bioactive glass microspheres, " Journal of Non-Crystalline Solids, vol. 576, p. 121284, 2022.
[43] K. Ma, D. Huang, J. Cai, X. Cai, L. Gong, P. Huang, Y. Wang & T. Jiang, "Surface functionalization with strontium-containing nanocomposite coatings via EPD", Colloids and Surfaces B: Biointerfaces, vol. 146, pp. 97-106, 2016.
[44] A. Elumalai & D.K. Mills, "An Eco-Friendly, Simple, and Inexpensive Method for Metal-Coating Strontium onto Halloysite Nanotubes", Journal of Composites Science, vol. 6, no.9, p. 276, 2022.
[45] S. Shahid, U. Hassan, R. Billington, R. Hill & P. Anderson, "Glass ionomer cements: effect of strontium substitution on esthetics, radiopacity and fluoride release", Dental Materials, vol. 30, no. 3, pp. 308-313, 2014.
[46] J. You, J.-S. Yoo, K.-Y. Kum & S.-H. Hong, "Hydration behavior and radiopacity of strontium substituted Ca3SiO5 cement", Journal of the Korean Ceramic Society, vol. 58, no.3, pp. 330-336, 2021.
7- پینوشت
[ ] Anterior Cruciate Ligament
[2] Biocompatibility
[3] In vivo
[4] In vitro
[5] Inert
[6] Dip Spin Coating
[7] Dulbecco's Modified Eagle Medium
[8] Fetal Bovine Serum
[9] KATI
[10] Computer Numerical Control
[11] Energy-Dispersive X-Ray Spectroscopy
[12] X-Ray Diffraction
[13] Vision Measuring Machine
[14] Methyl Thiazol Terazolium
[15] Dimethyl Sulfoxideimet
[16] Phosphate-Buffered Saline