تأثیر نانو ذرات سرامیکی سیلیسیم کاربید بر خواص تریبولوژیکی روغن پایه پارافینیک SN500HVI
الموضوعات :میثم مکاریان 1 , الهام عامری 2
1 - دانشجوی دکترا، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی، واحد شهرضا، ایران.
2 - دانشیار، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی، واحد شهرضا، ایران.
الکلمات المفتاحية: نانوذره, تریبولوژی, سرامیک, سیلیسیم کاربید, روغن روانکار,
ملخص المقالة :
نانوذره سرامیکی سیلیسیم کاربید (SiC) در روغن پایه به منظور بررسی خواص اصطکاک و سایش در مبحث تریبولوژیکی مورد بررسی قرار گرفت. نانو ذرات در درصدهای وزنی 0.25، 0.5، 1 و 5 به روغن پایه اضافه شد. جهت افزایش پایداری نانوذره SiC در روغن پایه از اولئیک اسید جهت اصلاح سطح استفاده شد و برای مشخصه یابی از دستگاههای میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM)، پراش پرتوایکس (XRD) و طیفسنج مادونقرمز با تبدیل فوریه (FTIR) استفاده شد. این بررسی برای روغنپایه SN500HVI از شرکت نفت سپاهان ایران انجام شد. آزمونهای سایش و اصطکاک روی مخلوط نانوذره و روغن SN500HVI صورت پذیرفت. اثرات تریبولوژیکی روغن پایه/ نانوذره با استفاده از آزمون آزمایشگاهی پین روی دیسک مطابق با روش استاندارد آزمون ASTM G99 بررسی شد. بر اساس نتایج بهدستآمده از XRD میانگین اندازه نانو ذرات اصلاح سطح شده کمتر از 30 نانومتر به دست آمد. مخلوط روغن پایه/ نانوذره با غلظتهای 25/0، 5/0 و 1 درصد وزنی به ترتیب موجب کاهش 26%، 15% و 4% در ضریب اصطکاک شد. این رفتار تریبولوژیکی ناشی از نشستن و چسبیدن نانو ذرات روی سطوح درگیر سایش میباشد. همچنین توپوگرافی سطوح فرسایش یافته با استفاده از میکروسکوپ الکترونی روبشی (FESEM) آنالیز شد. نتایج نشان دادند که نانوذره SiC با توجه به مناسب بودن خواص فیزیکی همچون سختی مناسب، شکل کروی و سطح ویژه بالا میتواند افزودنی مؤثری جهت بالا بردن کیفیت روغن روانکار در بحث کاهش اصطکاک و سایش به شمار آید.
[1] Y. J. J. Jason, H. G. How, Y. H. Teoh & H. G. A Chuah, "Study on the Tribological Performance of Nanolubricants", Processes, vol. 8, pp.1372-1385, 2020.
[2] V. S. Mello, M. F. Trajano, A. E. D. S. Guedes & S. M. Alves, "Comparison Between the Action of Nano-Oxides and Conventional EP Additives in Boundary Lubrication", Lubricants, vol. 8, pp. 54-69, 2020.
[3] T. Norrby & A. L. Jonsson, "Oxidation stability and base oil sulphur", The European Lubricants Industry Magazine, vol. 148, pp. 32-38, 2018.
[4] D. X. Peng, C. H. Chen, Y. Kang, Y. P. Chang & S. Y. Chang, "Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant", Industrial Lubrication and Tribology, vol. 62, pp. 111-120, 2010.
[5] Y. Zhao, Z. Zhang & H. Dang, "Preparation of tin nanoparticles by solution dispersion", Materials Science and Engineering: A, Vol. 359, pp. 405-407, 2003.
[6] J. Zhou, J. Yang, Z. Zhang, W. Liu, Q. Xue, "Study on the structure and tribological properties of surface-modified Cu nanoparticles", Materials ResearchBulletin, vol. 34, pp.1361-1367, 1999.
[7] م. اکبرزاده مقدم، و م. ززند رحیمی، "اعمال پوشش روانکار جامد دی سولفید مولیبدن توسط روش نفوذی حرارتی بر روی فولاد"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 11، شماره 3، صفحه 1-10، پاییز 1396.
[8] ص. منافی، و م. طلایی، "مطالعه خواص فیزیکی و مکانیکی پلی یورتان تقویت شده با نانو ذرات تیتانیا"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 12، شماره 4، صفحه 1-16، زمستان 1397.
[9] ر. رحیم زاده، ع. شفیعی، و ک. امینی، "بررسی ریز ساختار و خواص سایشی پوششهای NiCrAlY تقویت شده با ذرات Al2O3 اعمالی به روش پاشش حرارتی پلاسمایی"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 12، شماره 1، صفحه 41-57، بهار 1397.
[10] H. H. Patil & D. Sangli, "Tribological properties of SiO2 nanoparticles added in SN-500 base oil", International Journal of Engineering Research & Technology (IJERT), vol. 2, pp. 763-768, 2013.
[11] A. Tomala, M. Rodríguez Ripoll, C. Gabler, M. Remskar & M. Kalin "Interactions between MoS2 nanotubes and conventional additives in model oils", Tribology International, vol. 110, pp. 140–150, 2017.
[12] A. Tomala, M. R. Ripoll, C. Gabler, M. Remškar & M. Kalin, "Interactions between MoS2 nanotubes and conventional additives in model oils", Tribology international, vol. 110, pp.140-150, 2017.
[13] Z. S. Hu, J. X. Dong & G. X. Chen, "Study on antiwear and reducing friction additive of nanometer ferric oxide",Tribology international, vol. 31, pp. 355-360, 1998.
[14] M. Zhang, X. Wang, X. Fu & Y. Xia, "Performance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha-olefin", Tribology International, vol. 42, pp. 1029-1039,2009.
[15] H. Xie, B. Jiang, J. He, X. Xia & F. Pan, "Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts", Tribology International, vol. 93. pp. 63-70, 2016.
[16] A. D. Thampi, E. Sneha, B. Sasidharan & S. Rani, "Effect of SiC nanoparticles on the tribological properties of rice bran oil-based Lubricant", Materials Science and Engineering, vol. 1114, pp. 12054, 2021.
[17] A. H. Battez, R. González, J. L. Viesca, J. E. Fernández J. D., Fernández, A. Machado & J. CuO, Riba, "ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants", Wear, vol. 265, pp 422-428, 2008.
[18] L. Chen & D. Zhu, "Preparation and tribological properties of unmodified and oleic acid-modified CuS nanorods as lubricating oil additives", Ceramics International, vol. 43, pp. 4246-4251, 2017.
[19] T. R. Sriharsha, S. Saha, K. S. Kumar & D. H. Kumar, "Behavior of nano lubricant operated hydrodynamic solid journal bearing", International Journal of Advanced Engineering Technology, vol. 3, pp. 398-401, 2012.
[20] T. L. Petrenko, V. P. Bryksa & T. T. Petrenko, "Bistable behavior of the nitrogen impurity in SiC nanoclusters", Nanoscale, vol. 12, pp. 11536-11555, 2020.
[21] A. Najafi, F. Golestani-Fard, H. R. Rezaie & N. Ehsani, "A study on sol–gel synthesis and characterization of SiC nano powder", Journal of sol-gel science and technology, vol. 59, pp. 205-214, 2011.
[22] Y. Li, C. Chen, J. T. Li, Y. Yang & Z. M. Lin,"Surface charges and optical characteristic of colloidal cubic SiC nanocrystals", Nanoscale research letters, vol. 6, pp. 1-7,2011.
[23] G. Q. Jin & X. Y. Guo, "Synthesis and characterization of mesoporous silicon carbide", Microporous and mesoporous materials, vol. 60, pp. 207-212, 2003.
[24] J. Ye, S. Zhang & W. E. Lee, "Novel low temperature synthesis and characterisation of hollow silicon carbide spheres", Microporous and Mesoporous Materials, vol. 152, pp. 25-30, 2012.
[25] Y. Chen, P. Renner & H. Liang, "Dispersion of nanoparticles in lubricating oil: A critical review", Lubricants, vol. 7, pp. 2-21, 2019.
[26] S. J. Schoell, A. Oliveros, M. Steenackers, S. E. Saddow & I. D. Sharp, "Multifunctional SiC Surfaces: From Passivation to Biofunctionalization", Silicon Carbide Biotechnology, pp. 63-117, 2012.
[27] M. Xu, M. Wu, S. Wang & M. Guan, "Study on Rheological Properties of SiC Slurry", Materials Science and Engineering, vol. 394, pp. 32133, 2018.
[28] J. Y. Park, Y. J. Lee, K. W. Jun, J. O. Baeg & Yim, D. J. "Chemical synthesis and characterization of highly oil dispersed MgO nanoparticles", Journal of Industrial and engineering chemistry, vol. 12, pp. 882-887, 2006.
[29] م. تیموری، ا. منشی، و م. کثیری، "سنتز ویسکرهای کاربید سیلیسیم نانو ساختار با مکانیزم بخار- مایع- جامد (VLS)"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 7، شماره 4، صفحه 49-55، زمستان 1392.
[30] ف. صفاری، ا. منشی، ا. م. نوربخش، و م. سلطانپور، "ﺳﺎﺧﺖ و بررسی ﺻﻴﻘﻞ دﻫﻨﺪه ﻣﻨﺎﺳﺐ ﺟﻬﺖ ﭘﻮﻟﻴﺶ ﺷﻴﺸﻪ ﺑﺎ اﺳﺘﻔﺎده از ترکیبات ﺳﻴﻠﻴﺲ و اﻛﺴﻴﺪ ﺳﺮﻳﻢ و ﻛﺎرﺑﻴﺪ ﺳﻴﻠﻴﺴﻴﻢ"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 7، شماره 2، صفحه 25-33، تابستان 1392.
[31] R. Y. Hong, J. H. Li, S. Z. Zhang, H. Z. Li, Y. Zheng, J. M. Ding & D. G. Wei, "Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids", Applied Surface Science, vol. 255, pp.3485-3492, 2009.
[32] M. Pishvaei & T. F. Farshchi, "Synthesis of high solid content polyacrylate/nanosilica latexes via miniemulsion polymerization", vol.19, pp. 707-716. 2010.
[33] I. M. Kooter, A. J. Pierik, M. Merkx, B. A. Averill, N. Moguilevsky, A. Bollen & R. Wever,"Difference Fourier transform infrared evidence for ester bonds linking the heme group in myeloperoxidase, lactoperoxidase, and eosinophil peroxidase", Journal of the American Chemical Society, vol. 119, pp. 11542-11543, 1997.
[34] M. H. Esfe, M. Bahiraei, M. H. Hajmohammad & M. Afrand, "Rheological characteristics of MgO/oil nanolubricants: experimental study and neural network modeling", International Communications in Heat and Mass Transfer, vol. 86, pp. 245-252, 2017.
[35] T. Luo, X. W. Wei, X. Huang, L. Huang & F. Yang, "Tribological properties of Al2O3 nanoparticles as lubricating oil additives", Ceram, vol. 40, pp. 7143–7149, 2014.
[36] N. P. Suh, S. Jahanmir & I. E. P. Abrahamson, "The delamination theory of wear", vol. 25, pp. 111-124, 1973.
[37] C. Zhao, Y. K. Chen, Y. Jiao, A. Loya & G. G. Ren, "The preparation and tribological properties of surface modified zinc borate ultrafine powder as a lubricant additive in liquid paraffin", Tribology International, vol. 70, pp. 155-164, 2014.
[38] Y. Ttsuya & R. Takagi, "Lubricating properties of lead films on copper", Wear, vol. 7, pp.131-143, 1964.
[39] T. Luo, X. W. Wei, H. Y. Zhao, G. Y. Cai & X. Y. "Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives", Ceramics International, vol. 40, pp.10103-10109, 2014.
[40] A. Leitans, E. Palcevskis, "Tribological Properties of Zirconium Oxide, Spinel and Mullite Nanopowders as Lubricating Oil Additives", In Key Engineering Materials, Trans Tech Publications Ltd. vol. 721, pp. 451-455. 2017.
[41] Q. Chen, S. Zheng, S. Yang, W. Li, X. Song & B. Cao, "Enhanced tribology properties of ZnO/Al 2 O 3 composite nanoparticles as liquid lubricating additives", Journal of sol-gel science and technology, vol. 61, pp. 501-508, 2012.
[42] Y. Y. Wu, W. C. Tsuia & T. C. Liu, "Experimental analysis of tribological properties of lubricating oils with nanoparticle additives", Wear, vol. 262, pp. 819-825, 2007.
[43] Q. Chang, P. Rudenko, D. J. Miller, J. Wen, D. Berman, Y. Zhang & A. Erdemir, "Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive", Tribology International, vol. 110, pp. 35-40, 2017.
_||_