سنتز و مطالعه فعالیت کاتالیزوری بسیار موثر نانوذرات پلاتین- اورتوفریت لانتانیم قرار گرفته در بستر پلی آنیلین-کیتوسان برای الکترواکسیداسیون متانول
الموضوعات :سمیه خمرنیا 1 , ژیلا صفاری 2 , مهری السادات اکرامی کاخکی 3 , علیرضا اکبری 4
1 - دانشجوی دکتری، گروه شیمی، دانشگاه پیام نور، 4697-19395، تهران، ایران
2 - استادیار، گروه شیمی، واحد زاهدان، دانشگاه آزاد اسلامی، زاهدان، ایران
3 - استادیار، آزمایشگاه مرکزی، مجتمع آموزش عالی فنی و مهندسی اسفراین، اسفراین، خراسان شمالی، ایران
4 - دانشیار، گروه شیمی، دانشگاه پیام نور، 4697-19395، تهران، ایران
الکلمات المفتاحية: کیتوسان, پلی آنیلین, پلاتین, الکترواکسیداسیون متانول, اورتوفریت لانتانیم,
ملخص المقالة :
در این پژوهش، پلی آنیلین (PA) همراه با کیتوسان (CH) به عنوان بستری موثر و مناسب برای نانوذرات استفاده گردید. نانوذرات اورتوفریت لانتانیم (LFO) با روش سل-ژل سنتز و با تکنیک های پراش پرتو ایکس (XRD) و طیف سنجی پراکندگی انرژی پرتوی ایکس (EDS) شناسایی گردید. نانوکاتالیست Pt-LFO/PA-CH با کاهش شیمیایی هگزاکلروپلاتینیک اسید به وسیله سدیم تتراهیدروبورات در حضور نانوذرات LFO در بستر PA-CH تهیه شد. شکل ظاهری و توزیع نانوذرات با تصاویر میکروسکوپ الکترونی عبوری (TEM) تعیین شدند. فعالیت کاتالیزوری نانوکاتالیست Pt-LFO/PA-CH برای الکترواکسیداسیون متانول با تکنیک های ولتامتری چرخه ای و طیف سنجی امپدانس الکتروشیمیایی مطالعه شد. اثرات برخی عوامل تجربی برای الکترواکسایش متانول مانند غلظت متانول، سرعت روبش و دما در کاتالیست تهیه شده مطالعه گردید. انرژی فعال سازی قله آندی اکسایش متانول در Pt-LFO/PA-CH نیز محاسبه گردید و مقدار آن kJ mol-1 14/17 به دست آمد. فعالیت کاتالیزوری کاتالیست Pt-LFO/PA-CH برای الکترواکسایش متانول با کاتالیست Pt/PA-CH مقایسه گردید. سطح مقطع فعال الکتروشیمیایی کاتالیست Pt-LFO/PA-CH (m2g-1Pt 77/46) بیشتر از Pt/PA-CH ( m2g-1Pt 54/69) به دست آمد. در غلظت متانول M 1/76، چگالی جریان قله آندی اکسایش متانول در Pt-LFO/PA-CH (mA cm-2 377/58) بیشتر از کاتالیست Pt/PA-CH (mA cm-2 203/67) بود. سطح مقطع فعال الکتروشیمیایی و چگالی جریان بالاتر Pt-LFO/PA-CH برای اکسایش متانول نشان دهنده فعالیت کاتالیزوری بسیار بهبود یافته Pt-LFO/PA-CH برای الکترواکسایش متانول می باشد. از این رو، کاتالیست تهیه شده می تواند به عنوان کاتالیستی موثر برای الکترواکسایش متانول در پیل های سوختی متانولی مستقیم به کار رود.
[1] ر. خالقیان مقدم، "بررسی فعالیت کاتالیستی نانوکامپوزیت پالادیم- نانولوله های کربنی جهت الکترواکسایش متانول در پیل های سوختی و مقایسه آن با کاتالیست پلاتینی"، فصلنامه علمی پژوهشی- فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 1، صفحه 161-168، 1396.
[2] S. T. Hunt, M. Milina, A. C. Alba-Rubio, C. H. Hendon, J. A. Dumesic & Y. Román-Leshkov, “Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts”, Science, Vol. 352, pp. 974–978, 2016.
[3] S. Mondal & S. Malik, “Easy synthesis approach of Pt-nanoparticles on polyaniline surface: an efficient electro-catalyst for methanol oxidation reaction”, J. Power Sources, Vol. 328, pp. 271–279, 2016.
[4] M. E. Scofield, C. Koenigsmann, L. Wang, H. Liu & S. S. Wong, “Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction”, Energy Environ. Sci., Vol. 8, pp. 350–363, 2015.
[5] J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli & Y. Shao-Horn, “Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation”, J. Am. Chem. Soc., Vol. 135, pp. 7985–7991, 2013.
[6] Q. Chang, Y. Xu, Z. Duan, F. Xiao, F. Fu, Y. Hong, J. Kim, S. I. Choi, D. Su & M. Shao, “Structural evolution of sub-10 nm octahedral platinum-nickel bimetallic nanocrystals”, Nano Lett., Vol. 17, pp. 3926–3931, 2017.
[7] P. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao & X. Huang, “Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis”, Nat. Commun., Vol. 8, pp. 14580, 2017.
[8] J. Li, H. Rong, X. Tong, P. Wang, T. Chen & Z. Wang, “Platinum-silver alloyed octahedral nanocrystals as electrocatalyst for methanol oxidation reaction”, J. Colloid Interf. Sci., Vol. 513, pp. 251–257, 2017.
[9] K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, H. Y. Ha, S. A. Hong, H. Kim & A. Wieckowski, “Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation”, J. Phys. Chem. B, Vol. 106, pp. 1869–1877, 2002.
[10] C. T. Hsieh & J. Y. Lin, “Fabrication of bimetallic Pt–M (M = Fe, Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells”, J. Power Sources, Vol. 188, pp. 347–352, 2009.
[11] J. Xu, K. Hua, G. Sun, C. Wang, X. Lv & Y. Wang, “Electrooxidation of methanol on carbon nanotubes supported Pt–Fe alloy electrode”, Electrochem. Commun., Vol. 8, pp. 982–986, 2006.
[12] J. R. Rodriguez, R. M. Félix, E. A. Reynoso, Y. Gochi-Ponce, Y. Verde Gómez, S. Fuentes Moyado & G. Alonso-Núñez, “Synthesis of Pt and Pt-Fe nanoparticles supported on MWCNTs used as electrocatalysts in the methanol oxidation reaction”, J. Energy Chem., Vol. 23, pp. 483–490, 2014.
[13] Y. T. Liu, Q. B. Yuan, D. H. Duan, Z. L. Zhang, X. G. Hao, G. Q. Wei & S. B. Liu, “Electrochemical activity and stability of core–shell Fe2O3/Pt nanoparticles for methanol oxidation”, J. Power Sources, Vol. 243, pp. 622–629, 2013.
[14] Z. Tang & G. Lu, “High performance rare earth oxides LnOx (Ln = Sc, Y, La, Ce, Pr and Nd) modified Pt/C electrocatalysts for methanol electrooxidation”, J. Power Sources, Vol. 162, pp. 1067–1072, 2006.
[15] D. M. Gu, Y. Y. Chu, Z. B. Wang, Z. Z. Jiang, G. P. Yin & Y. Liu, “Methanol oxidation on Pt/CeO2–C electrocatalyst prepared by microwave-assisted ethylene glycol process”, Appl. Catal. B: Environ., Vol. 102, pp. 9–18, 2011.
[16] T. Arakawa, N. Ohara, H. Kurachi & J. Shiokawa, “Catalytic oxidation of methanol on LnCoO3 (Ln = La, Eu) perovskite oxides”, J. Colloid Interf. Sci., Vol. 108, pp. 407–410, 1985.
[17] M. S. Ekrami-Kakhki, N. Farzaneh & E. Fathi, “Superior electrocatalytic activity of Pt-SrCoO3−δ nanoparticles supported on functionalized reduced graphene oxide-chitosan for ethanol oxidation”, Int. J. Hydrogen Energy, Vol. 42, pp. 21131–21145, 2017.
[18] M. Noroozifar, M. Khorasani-Motlagh, M. S. Ekrami-Kakhki & R. Khaleghian-Moghadam, “Enhanced electrocatalytic properties of Pt-chitosan nanocomposite for direct methanol fuel cell by LaFeO3 and carbon nanotube”, J. Power Sources, Vol. 248, pp. 130–139, 2014.
[19] H. C. Yu, K. Z. Fung, T. C. Guo & W. L. Chang, “Syntheses of perovskite oxides nanoparticles La1−xSrxMO3−δ (M = Co and Cu) as anode electrocatalyst for direct methanol fuel cell”, Electrochim. Acta, Vol. 50, pp. 811–816, 2004.
[20] M. S. Ekrami-Kakhki, Z. Yavari, J. Saffari & S. A. Ekrami-Kakhki, “Perovskite-type LaFeO3 and LaFeO3-CNTs nanocrystals as active anode for methanol oxidation in alkaline solutions”, J. Electr. Eng., Vol. 4, pp. 88–99, 2016.
[21] Z. Merati, J. Basiri Parsa & R. Babaei-Sati, “Electrochemically synthesized polypyrrole/MWCNTs-Al2O3 ternary nanocomposites supported Pt nanoparticles toward methanol oxidation”, Int. J. Hydrogen Energy, Vol. 43, pp. 20993–21005, 2018.
[22] M. S. Ekrami-Kakhki, A. Naeimi & F. Donyagard, “Pt nanoparticles supported on a novel electrospun polyvinyl alcohol-CuO-Co3O4/chitosan based on Sesbania sesban plant as an electrocatalyst for direct methanol fuel cells”, Int. J. Hydrogen Energy, Vol. 44, pp. 1671–1685, 2019.
[23] G. Foti, C. Mousty, K. Novy, C. Comninellis & V. Reid, “Pt/Ti electrode preparation methods: application to the electrooxidation of isopropanol”, J. Appl. Electrochem., Vol. 30, pp. 147–151, 2000.
[24] Carrillo, T. J. Leo, O. Santiago, F. Acción, E. Moreno-Gordaliza & M. A. Raso, “Polypyrrole and platinum deposited onto carbon substrate to enhance direct methanol fuel cell electrodes behavior”, Int. J. Hydrogen Energy, Vol. 43, pp. 16913–16921, 2018.
[25] R. Yan, B. Jin, D. Li, J. Zheng, Y. Li & C. Qian, “One-step electrochemically co-deposited Pt nanoparticles/polyaniline composites with raspberry structures for methanol electro-oxidation”, Synthetic Met., Vol. 235, pp. 110–114, 2018.
[26] L. Brožová, P. Holler, J. Kovářová, J. Stejskal & M. Trchová, “The stability of polyaniline in strongly alkaline or acidic aqueous media”, Polym. Degrad. Stabil., Vol. 93, pp. 592–600, 2008.
[27] F. J. Liu, L. M. Huang, T. C. Wen, C. F. Li, S. L. Huang & A. Gopalan, “Platinum particles dispersed polyaniline-modified electrodes containing sulfonated polyelectrolyte for methanol oxidation”, Synthetic Met., Vol. 158, pp. 767–774, 2008.
[28] W. Jin, X. Huang, H. Cheng, T. Xu, F. Wang, X. Guo, Y. Wu, Y. Ying, Y. Wen & H. Yang, “Polyaniline hollow tubes loading tiny platinum nanoparticles for boosting methanol oxidation”, Appl. Surf. Sci., Vol. 483, pp. 489–495, 2019.
[29] R. Yan, X. Sun, B. Jin, D. Li, J. Zheng & Y. Li, “Preparation of platinum/polyaniline/multi-walled carbon nanotube nanocomposite with sugarcoated haws structure for electrocatalytic oxidation of methanol”, Synthetic Met., Vol. 250, pp. 146–151, 2019.
[30] Z. Wang, G. Gao, H. Zhu, Z. Sun, H. Liu & X. Zhao, “Electrodeposition of platinum microparticle interface on conducting polymer film modified nichrome for electrocatalytic oxidation of methanol”, Int. J. Hydrogen Energy, Vol. 34, pp. 9334–9340, 2009.
[31] W. Zhou, C. Zhai, Y. Du, J. Xu & P. Yang, “Electrochemical fabrication of novel platinum-poly(5-nitroindole) composite catalyst and its application for methanol oxidation in alkaline medium”, Int. J. Hydrogen Energy, Vol. 34, pp. 9316–9323, 2009.
[32] ف. حیدری، ر. بازرگان لاری و م. ا. بحر العلوم، "ساخت و بررسی خواص نانوکامپوزیت طبیعی و زیست سازگار کایتوسن/مگنتیت"، فصلنامه علمی پژوهشی- فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 3، صفحه 247-256، 1394.
[33] W. Zheng, R. Liu, D. Peng & G. Meng, “Hydrothermal synthesis of LaFeO3 under carbonate-containing medium”, Mater. Lett., Vol. 43, pp. 19–22, 2000.
[34] K. Kakaei, A. Rahimi, S. Husseindoost, M. Hamidi, H. Javan & A. Balavandi, “Fabrication of Pt–CeO2 nanoparticles supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation”, Int. J. Hydrogen Energy, Vol. 41, pp. 3861–3869, 2016.
[35] M. S. Ekrami-Kakhki, N. Farzaneh, S. Abbasi & B. Makiabadi, “Electrocatalytic activity of Pt nanoparticles supported on novel functionalized reduced graphene oxide-chitosan for methanol electrooxidation”, J. Mater. Sci.: Mater. El., Vol. 28, pp. 12373–12382, 2017.
[36] M. Noroozifarn, M. Khorasani-Motlagh, R. Khaleghian-Moghadam, M. Ekrami-Kakhki & M. Shahraki, “Incorporation effect of nanosized perovskite LaFe0.7Co0.3O3 on the electrochemical activity of Pt nanoparticles-multi walled carbon nanotube composite toward methanol oxidation”, J. Solid State Chem., Vol. 201, pp. 41–47, 2013.
[37] H. Zhao, Z. Zheng, J. Li, H. Jia, K. Wong, Y. Zhang & W. M. Lau, “Substitute of expensive Pt with improved electrocatalytic performance and higher resistance to CO poisoning for methanol oxidation: the case of synergistic Pt-Co3O4 nanocomposite”, Nano-Micro Lett., Vol. 5, pp.296–302, 2013.
[38] R. S. Amin, R. M. Abdel Hameed, K. M. El-Khatib, H. El-Abd & E. R. Souaya, “Effect of preparation conditions on the performance of nano Pt-CuO/C electrocatalysts for methanol electro-oxidation”, Int. J. Hydrogen Energy, Vol. 37, pp. 18870–18881, 2012.
[39] K. Ding, Z. Jia, Q. Wang, X. He, N. Tian, R. Tong & X. Wang, “Electrochemical behavior of the self-assembled membrane formed by calmodulin (CaM) on an Au substrate”, J. Electroanal. Chem., Vol. 513, pp. 67–71, 2001.
[40] Q. He, W. Chen, S. Mukerjee, S. Chen & F. Laufek, “Carbon- supported PdM (M=Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media”, J. Power Sources, Vol. 187, pp. 298–304, 2009.
[41] Shafaei Douk, H. Saravani & M. Noroozifar, “A fast method to prepare Pd-Co nanostructures decorated on graphene as excellent electrocatalyst toward formic acid oxidation”, J. Alloy. Compd., Vol. 739, pp. 882–891, 2018.
[42] Z. Yavari, M. Noroozifar & M. Khorasani-Motlagh, “Multifunctional catalysts toward methanol oxidation in direct methanol fuel cell”, J. Appl. Electrochem., Vol. 45, pp. 439–451, 2015.
[43] M. S. Ekrami-Kakhki, N. Farzaneh, S. Abbasi, H. Beitollahi & S. A. Ekrami-Kakhki, “An investigation of methyl viologen functionalized reduced graphene oxide: chitosan as a support for Pt nanoparticles towards ethanol electrooxidation”, Electron. Mater. Lett., Vol. 14, pp. 616–628, 2018.
[44] Z. He, J. Chen, D. Liu, H. Zhou & Y. Kuang, “Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation”, Diam. Relat. Mater., Vol. 13, pp. 1764–1770, 2004.
[45] Y. Zhao, R. Wang, Z. Han, C. Li, Y. Wang, B. Chi, J. Li & X. Wang, “Electrooxidation of methanol and ethanol in acidic medium using a platinum electrode modified with lanthanum-doped tantalum oxide film”, Electrochim. Acta, Vol. 151, pp. 544–551, 2015.
_||_