مطالعه تأثیر حساسشدن بر رفتارخوردگی فولاد زنگنزن دوپلکس SAF 2205 در ناحیه ترانسپسیو
الموضوعات :خشایار مرشدبهبهانی 1 , پوریا نجفی سیار 2 , محمود پاکشیر 3
1 - دانشگاه شیراز
2 - دانشگاه شیراز
3 - دانشگاه شیراز
الکلمات المفتاحية: فولاد زنگنزن دوپلکس SAF 2205, خوردگی بیندانهای, امپدانس الکتروشیمیایی,
ملخص المقالة :
در این پژوهش، رفتار خوردگی بین دانهای فولاد زنگنزن دوپلکس SAF 2205 در محلول "2 مولار اسید سولفوریک + 1 مولار اسید کلریدریک" در دمای oC 30 با استفاده از آزمونهای پلاریزاسیون پتانسیودینامیک، راکتیواسیون پتانسیوکینتیک الکتروشیمیایی دو حلقهای (DLEPR)، تفرق اشعهایکس و طیفسنجی امپدانس الکتروشیمیایی (EIS) مورد بررسی قرار گرفت. طیفسنجی امپدانس الکتروشیمیایی، برای نمونههایی با درجات مختلفی از حساس شدن به مدت 1 و 5 ساعت در دمای oC 725، وجود سه رفتار متفاوت را در پتانسیل های مختلف ناحیه ترانس پسیو نشان داد. نتایج بررسی حاکی از کاهش مقاومت انتقال بار (Rct) و مقاومت پلاریزاسیون (RP) در اثر افزایش زمان حساسشدن میباشد و این نتایج با تصاویر میکروسکوپ نوری و الکترونی از سطح نمونههای خوردهشده همخوانی دارد.
[1] A. I. Munoz, J. G. A. Anton, J. L. Guinon & V. P. R. Herranz, “Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in LiBr solutions using electrochemical techniquesˮ, Corrosion Science, Vol. 49, pp. 3200-3225, 2007.
[2] H. Sieurin, E. M. Westin, M. Liljas & R. Sandström, “Fracture Toughness of Welded Commercial Lean Duplex Stailess STEELSˮ, Welding in the World, Vol. 53, pp. R24-R33, 2009.
[3] K. Ravindranath & S. N. Malhotra, “The Influence of Aging on The Intergranular Corrosion OF 22 Chromium-5 Nickel Duplex Stainless STEELˮ, Corrosion Science, Vol. 37, pp. 121-132, 1995.
[4] K. L. Weng, H. R. Chen & J. R. Yang, “The low-temperature aging embrittlement in a 2205 duplex stainless steelˮ, Materials Science and Engineering, Vol. 379A, pp. 119-132, 2004.
[5] J. Gong, Y. M. Jiang, B. Deng, J. L. Xu, J. P. Hu & J. Li, “Evaluation of intergranular corrosion susceptibility of UNS S31803 duplex stainless steel with an optimized double loop electrochemical potentiokinetic reactivation methodˮ, Electrochimica Acta, Vol. 55 pp. 5077-5083, 2010.
[6] “Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steelsˮ, ASTM International, 2002.
[7] “Standard Test Method for Electrochemical Reactivation (EPR) for Detecting Sensitization of AISI Type 304 and 304L Stainless Steelsˮ, ASTM international, 1999.
[8] T. Amadou, C. Braham & H. Sidhom, “Double Loop Electrochemical Potentiokinetic Reactivation Test Optimization in Checking of Duplex Stainless Steel Intergranular Corrosion Susceptibilityˮ, Metallrgical and Materials Transactions, Vol. 35A, pp. 3499-3513, 2004.
[9] G. H. Aydogdu & M. K. Aydinol, “Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steelˮ, Corrosion Science, Vol. 48, pp. 3565-3583, 2006.
[10] B. Deng, Y. Jiang, J. Xu, T. Sun, J. Gao, L. Zhang, W. Zhang and J. Li, "Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101", Corrosion Science, Vol. 52 pp. 969-977, 2010.
[11] M. E. Arıkan, R. Arıkan & M. Doruk, “Determination of Susceptibility to Intergranular Corrosion of UNS 31803 Type Duplex Stainless Steel by Electrochemical ReactivationMethodˮ, International Journal of Corrosion, Vol. Article ID 651829, 2012.
[12] A. Arutunow & K. Darowicki, “DEIS evaluation of the relative effective surface area of AISI 304 stainless steel dissolution process in conditions of intergranular corrosionˮ, Electrochimica Acta, Vol. 54, pp. 1034-1041, 2009.
[13] A. Arutunow, K. Darowicki & A. Z. ski, “Atomic force microscopy based approach to local impedance measurements of grain interiors and grain boundaries of sensitized AISI 304 stainless steelˮ, Electrochimica Acta, Vol. 56, pp. 2372-2377, 2011.
[14] K. Morshed Behbahani, M. Pakshir & S. Matin, Advanced Processes in Materials, Vol. 8, pp. 61-71, 2014.
[15] Z. J. Jia, C. W. Du, C. T. Li, Z. Yi & X. G. Li, “Study on pitting process of 316L stainless steel by means of staircase potential electrochemical impedance spectroscopyˮ, nternational Journal of Minerals, Metallurgy and Materials, Vol. 18, pp. 48-52, 2011.
[16] J. Hou, G. Zhu, J. Xu & H. Liu, “Anticorrosion Performance of Epoxy Coatings Containing Small Amount of Inherently Conducting PEDOT/PSS on Hull Steel in Seawaterˮ, Journal of Materials Science & Technology, Vol. 29, pp. 678-684, 2013.
[17] S. M. Bhola, S. Kundu, R. Bhola, B. Mishra & S. Chatterjee, “Electrochemical Study of Diffusion Bonded Joints between Micro-duplex Stainless Steel and Ti6Al4V Alloyˮ, Journal of Materials Science & Technology, Vol. 30, pp. 163-171, 2014.
[18] R. K. Gupta, K. Mensah-Darkwa & D. Kumar, “Corrosion Protective Conversion Coatings on Magnesium Disks Using a Hydrothermal Techniqueˮ, Journal of Materials Science & Technology, Vol. 30, pp. 47-53, 2014.
[19] M. Pakshir, R. Medhat & K. Morshed Behbahani, Advanced Processes in Materials, Vol. 9, pp. 1-8, 2015.
[20] R. Chaves, I. Costa, H. G. D. Melo & S. Wolynec, “Evaluation of selective corrosion in UNS S31803 duplex stainless steel with electrochemical impedance spectroscopyˮ, Electrochimica Acta, Vol. 51, pp. 1842-1846, 2006.
[21] “Standard Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic/Ferritic Stainless Steelsˮ, ASTM International, 2003.
[22] K. Morshed Behbahani & M. Pakshir, “Effect of Different Degrees of Sensitization on the EIS Response of 316L and 316 SS in Transpassive Regionˮ, Journal of Materials Engineering and Performance, Vol. 23, pp. 2283-2292, 2014.
[23] K. Morshed Behbahani, M. Pakshir, Z. Abbasi & P. Najafisayar, “Damage mechanism at different transpassive potentials of solution-annealed 316 and 316l stainless steelsˮ, International Journal of Minerals, Metallurgy, and Materials, Vol. 22, pp. 45-51, 2015.
[24] C. A. Huang, Y. Z. Chang & S. Chen, “The electrochemical behavior of austenitic stainless steel with different degrees of sensitization in the transpassive potential region in 1 MH 2 SO 4 containing chlorideˮ, Corrosion science, Vol. 46, pp. 1501-1513, 2004.
[25] H. Duan, Y. Li & C. Yan, “Electrochemical repairing of pitted 18-8 stainless steelˮ, Journal of Material Science, Vol. 40, pp. 2911-2917, 2005.
[26] M. Maleeva, A. Rybkina, A. Marshakov & V. Elkin, “The effect of atomic hydrogen on the anodic dissolution of iron in a sulfate electrolyte studied with impedance spectroscopyˮ, Protection of Metals, Vol. 44, pp. 548-556, 2008.
_||_