رفتار الکتروشیمیایی و چسبندگی پوششهای الکتروفورتیک نانوساختار HA-TiO2
الموضوعات :
1 - هیئت علمی تمام وقت گروه مهندسی متالورژی
الکلمات المفتاحية: هیدروکسی آپاتیت, خوردگی, تیتانیا, لایه نشانی الکتروفورتیک, چسبندگی,
ملخص المقالة :
در این پژوهش، پوششهای کامپوزیتی از نانوذرات HA/TiO2 با ترکیب 0، 10 و 20 درصد وزنی TiO2 به روش لایه نشانی الکتروفورتیک در ولتاژ 20 ولت و زمان 3 دقیقه ایجاد شدند. برای مطالعه رفتار الکتروشیمیایی پوششها در محلول شبیه سازی شده بدن (SBF) در دمای oC 37، آزمون خوردگی به روش پلاریزاسیون پتانسیودینامیک انجام شد. به منظور بررسی تشکیل آپاتیت بر سطح پوششها و تاثیر حضور اکسید تیتانیم، پوششها از آزمون طیفسنجی امپدانس الکتروشیمیایی (EIS) استفاده شد. نحوه تغییرات پارامترهای مدار معادل با تشکیل آپاتیت در زمانهای مختلف محاسبه شده و مورد تجزیه و تحلیل قرار گرفت. کمترین مقدار چگالی جریان خوردگی (icorr) در مقابل بیشترین مقدار پتانسیل خوردگی (Ecorr) و مقاومت پلاریزاسیون (Rp) در نمونه کامپوزیتی با 20 % وزنی TiO2 مشاهده شد. بر اساس آنالیز شیمیایی ICP از غلظت یون کلسیم موجود در داخل محلول SBF مشاهده شد که سرعت انحلال در داخل محلول برای نمونه HA در مقایسه با سایر نمونهها بیشتر است و با افزایش مقدار فاز هیدروکسی آپاتیت در ساختار پوشش انحلال بیشتری صورت میگیرد. بعد از 15 روز غوطهوری مقدار غلظت یون کلسیم داخل SBF برای نمونه کامپوزیتی با 20 % وزنی TiO2 تقریباً ثابت میماند که نشان دهنده رسیدن سریعتر به شرایط پایدار و کامل شدن تشکیل آپاتیت بر سطح این پوششها است. همچنین استحکام چسبندگی پوششها با افزودن تیتانیا در نمونه با 20 % وزنی TiO2، تقریبا 2 برابر افزایش یافت.
[1] S. R. Paital & N. B. Dahotre, “Calcium phosphate coatings for bio-implant applications: Materials , performance factors , and methodologies”, Scanning, Vol. 66, pp. 1-70, 2009.
[2] Y. h. Jeong, H. c. Choe, W. A. Brantley & I. b. Sohn, “Surface & Coatings Technology Hydroxyapatite thin film coatings on nanotube-formed Ti – 35Nb – 10Zr alloys after femtosecond laser texturing”, Surface & Coatings Technology, 2012.
[3] X. Zhang, Q. Li, L. Li, P. Zhang, Z. Wang & F. Chen, “Fabrication of hydroxyapatite / stearic acid composite coating and corrosion behavior of coated magnesium alloy”, Materials Letters, Vol. 88, pp. 76-78, 2012.
[4] H. Farnoush, A. Abdi Bastami, A. Sadeghi, J. Aghazadeh Mohandesi & F. Moztarzadeh, “Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 20, pp. 90-97, 2013.
[5] A. Kobayashi & B. Subramanian, “Hydroxyapatite and YSZ reinforced hydroxyapatite coatings by gas tunnel type plasma spraying” pp. 213-216, 2013.
[6] M. Mittal, S. K. Nath & S. Prakash, “Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement”, Materials Science and Engineering, Vol. 33C, pp. 2838-2845, 2013.
[7] B. Pateyron, L. Pawłowski, N. Calve, G. Delluc & A. Denoirjean, “Modeling of phenomena occurring in plasma jet during suspension spraying of hydroxyapatite coatings”, Surface and Coatings Technology, Vol. 214, pp. 86-90, 2013.
[8] Y. C. Yang & C. Y. Yang, “Mechanical and histological evaluation of a plasma sprayed hydroxyapatite coating on a titanium bond coat”, Ceramics International, Vol. 39, pp. 6509-6516, 2013.
[9] S. Adibnia, A. Nemati, M. H. Fathi & S. Baghshahi, “Synthesis and characterization of sol-gel derived Hydroxyapatite- Bioglass composite nanopowders for biomedical applications”, Tissue Engineering, Vol. 12, pp. 51-57, 2012.
[10] A. Yelten, S. Yilmaz & F. N. Oktar, “Sol – gel derived alumina – hydroxyapatite – tricalcium phosphate porous composite powders”, Ceramics International, Vol. 38, pp. 2659-2665, 2012.
[11] A. Abdi Bastami, H. Farnoush, A. Sadeghi & J. Aghazadeh Mohandesi, “Sol–gel derived nanohydroxyapatite film on friction stir processed Ti–6Al–4V substrate”, Surface Engineering, Vol. 29, pp. 205-210, 2013.
[12] H. Farnoush, J. A. Mohandesi & D. H. Fatmehsari, “Effect of particle size on the electrophoretic deposition of hydroxyapatite coatings: A kinetic study based on a statistical analysis”, International Journal of Applied Ceramic Technology, Vol. 10, pp. 87-96, 2013.
[13] H. Farnoush, J. Aghazadeh Mohandesi, D. Haghshenas Fatmehsari & F. Moztarzadeh, “Modification of electrophoretically deposited nano-hydroxyapatite coatings by wire brushing on Ti–6Al–4V substrates”, Ceramics International, Vol. 38, pp. 4885-4893, 2012.
[14] H. Farnoush, J. Aghazadeh Mohandesi, D. Haghshenas Fatmehsari & F. Moztarzadeh, “A kinetic study on the electrophoretic deposition of hydroxyapatite–titania nanocomposite based on a statistical approach”, Ceramics International, Vol. 38, pp. 6753-6767, 2012.
[15] H. Farnoush, A. Sadeghi, A. Abdi Bastami, F. Moztarzadeh & J. Aghazadeh Mohandesi, “An innovative fabrication of nano-HA coatings on Ti-CaP nanocomposite layer using a combination of friction stir processing and electrophoretic deposition”, Ceramics International, Vol. 39, pp. 1477-1483, 2013.
[16] C. Gu, Q. Fu, H. Li, J. Lu & L. Zhang, “Study on special morphology hydroxyapatite bioactive coating by electrochemical deposition”, pp. 256-260, 2013.
[17] D. H. Li, J. Lin, D. Y. Lin & X. X. Wang, “Synthesis and charaterization of silicon-substituted hydroxyapatite coating by electrochemical deposition on Ti substrate”, Chinese Journal of Inorganic Chemistry, Vol. 27, pp. 1027-1032, 2011.
[18] D. H. Li, J. Lin, D. Y. Lin & X. X. Wang, “Synthesized silicon-substituted hydroxyapatite coating on titanium substrate by electrochemical deposition”, Journal of Materials Science: Materials in Medicine, Vol. 22, pp. 1205-1211, 2011.
[19] X. Lu, B. Zhang, Y. Wang, X. Zhou, J. Weng, S. Qu, B. Feng, F. Watari, Y. Ding & Y. Leng, “Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition”, Journal of the Royal Society Interface, Vol. 8, pp. 529-539, 2011.
[20] Y. Wang, X. Lu, D. Li, B. Feng, S. Qu & J. Weng, “Hydroxyapatite/chitosan composite coatings on titanium surfaces by pulsed electrochemical deposition”, Acta Polymerica Sinica, Vol. pp. 1244-1252, 2011.
[21] B. Antebi, X. Cheng, J. N. Harris, L. B. Gower, X. D. Chen & J. Ling, “Biomimetic collagen-hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique”, Tissue Engineering - Part C: Methods, Vol. 19, pp. 487-496, 2013.
[22] Q. Cai, Q. Feng, H. Liu & X. Yang, “Preparation of biomimetic hydroxyapatite by biomineralization and calcination using poly(l-lactide)/gelatin composite fibrous mat as template”, Materials Letters, Vol. 91, pp. 275-278, 2013.
[23] G. Ciobanu & O. Ciobanu, “Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces”, Materials Science and Engineering, Vol. 33C, pp. 1683-1688, 2013.
[24] H. Deplaine, M. Lebourg, P. Ripalda, A. Vidaurre, P. Sanz-Ramos, G. Mora, F. Prõsper, I. Ochoa, M. Doblaré, J. L. Gõmez Ribelles, I. Izal-Azcárate & G. Gallego Ferrer, “Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds”, Journal of Biomedical Materials Research - Part B Applied Biomaterials, Vol. 101 B, pp. 173-186, 2013.
[25] F. Peng, M. T. Shaw, J. R. Olson & M. Wei, “Influence of surface treatment and biomimetic hydroxyapatite coating on the mechanical properties of hydroxyapatite/poly(L-lactic acid) fibers”, Journal of Biomaterials Applications, Vol. 27, pp. 641-649, 2013.
[26] M. Wu, Q. Wang, X. Liu & H. Liu, “Biomimetic synthesis and characterization of carbon nanofiber/ hydroxyapatite composite scaffolds”, Carbon, Vol. 51, pp. 335-345, 2013.
[27] H. Farnoush, F. Muhaffel & H. Cimenoglu, “Fabrication and characterization of nano-HA-45S5 bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates”, Applied Surface Science, Vol. 324, pp. 765-774, 2015.
[28] L. Mohan, D. Durgalakshmi, M. Geetha, T. S. N. S. Narayanan & R. Asokamani, “Electrophoretic deposition of nanocomposite ( HAp + TiO 2 ) on titanium alloy for biomedical applications”, Ceramics International, Vol. 38, pp. 3435-3443, 2012.
[29] M. Sadat-shojai, M. t. Khorasani, E. Dinpanah-khoshdargi & A. Jamshidi, “Acta Biomaterialia Synthesis methods for nanosized hydroxyapatite with diverse structures”, Acta Biomaterialia, Vol. pp., 2013.
[30] R. M. Trommer, L. A. Santos & C. P. Bergmann, “Alternative technique for hydroxyapatite coatings”, Vol. 201, pp. 9587-9593, 2007.
[31] Y. Yang, K. h. Kim & J. L. Ong, “A review on calcium phosphate coatings produced using a sputtering process — an alternative to plasma spraying”, Science, Vol. 26, pp. 327-337, 2005.
[32] A. R. Boccaccini, S. Keim, R. Ma, Y. Li & I. Zhitomirsky, “Electrophoretic deposition of biomaterials”, Journal of the Royal Society, Interface / the Royal Society, Vol. 7, Suppl 5, pp. S581-613, 2010.
[33] M. Wei, A. J. Ruys, M. V. Swain, B. K. Milthorpe & C. C. Sorrell, “Hydroxyapatite-coated metals : Interfacial reactions during sintering”, Vol. 6, pp. 101-106, 2006.
[34] V. Cannillo, L. Lusvarghi & A. Sola, “Production and characterization of plasma-sprayed TiO 2 – hydroxyapatite functionally graded coatings”, Journal of the European Ceramic Society, Vol. 28, pp. 2161-2169, 2008.
[35] H. Zhou & J. Lee, “Nanoscale hydroxyapatite particles for bone tissue engineering”, Acta biomaterialia, Vol. 7, pp. 2769-2781, 2011.
[36] S. V. Dorozhkin, “Nanosized and nanocrystalline calcium orthophosphates”, Acta biomaterialia, Vol. 6, pp. 715-734, 2010.
[37] S. F. Ou, S. Y. Chiou & K. L. Ou, “Phase transformation on hydroxyapatite decomposition”, Ceramics International, Vol. 39, pp. 3809-3816, 2013.
[38] T. Wang, A. Dorner-reisel & E. Mu, “Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder”, Vol. 24, pp. 693-698, 2004.
[39] M. Gaona, R. S. Lima & B. R. Marple, “Nanostructured titania / hydroxyapatite composite coatings deposited by high velocity oxy-fuel ( HVOF ) spraying”, Materials Science and Engineering, Vol. 458A, pp. 141-149, 2007.
[40] W. Que, K. A. Khor, J. L. Xu & L. G. Yu, “Hydroxyapatite / titania nanocomposites derived by combining high-energy ball milling with spark plasma sintering processes”, Materials Research, Vol. 28, pp. 3083-3090, 2008.
[41] S. Bose & S. Tarafder, “Acta Biomaterialia Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering : A review”, Acta Biomaterialia, Vol. 8, pp. 1401-1421, 2012.
[42] S. V. Dorozhkin, “Bioceramics of calcium orthophosphates”, Biomaterials, Vol. 31, pp. 1465-1485, 2010.
[43] R. G. Carrodeguas & S. D. Aza, “Acta Biomaterialia a -Tricalcium phosphate : Synthesis , properties and biomedical applications”, Acta Biomaterialia, Vol. 7, pp. 3536-3546, 2011.
[44] T. Laonapakul, A. Rakngarm & Y. Otsuka, “Failure behavior of plasma-sprayed HAp coating on commercially pure titanium substrate in simulated body fluid ( SBF ) under bending load”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 15, pp. 153-166, 2012.
[45] C. T. Kwok, P. K. Wong, F. T. Cheng& H. C. Man, “Applied Surface Science Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition”, Applied Surface Science, Vol. 255, pp. 6736-6744, 2009.
[46] H. Farnoush, A. Abdi, A. Sadeghi, J. Aghazadeh & F. Moztarzadeh, “Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 20, pp. 90-97, 2013.
[47] X. B. Zheng & C. X. Ding, “Characterization of plasma-sprayed hydroxyapatite/TiO2 composite coatings”, Journal of Thermal Spray Technology, Vol. 9, pp. 520-525, 2000.
[48] X. F. Xiao, R. F. Liu & X. L. Tang, “Electrophoretic deposition of silicon substituted hydroxyapatite coatings from n-butanol-chloroform mixture”, Journal of Materials Science: Materials in Medicine, Vol. 19, pp. 175-182, 2008.
[49] X. F. Xiao, R. F. Liu & Y. Z. Zheng, “Characterization of hydroxyapatite / titania composite coatings codeposited by a hydrothermal – electrochemical method on titanium”, Surface & Coatings Technology, Vol. 200, pp. 4406-4413, 2006.
[50] A. L. G. M. Stern, “Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves”, Journal of The Electrochemical Society, Vol. 104, pp. 56-63, 1957.
[51] Y. Gu, S. Bandopadhyay, C. F. Chen, Y. Guo & C. Ning, “Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid”, Journal of Alloys and Compounds, Vol. 543, pp. 109-117, 2012.
[52] M. Mehdipour, A. Afshar & M. Mohebali, “Applied Surface Science Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study”, Applied Surface Science, Vol. 258, pp. 9832-9839, 2012.
[53] Y. W. Gu, K. A. Khor, D. Pan & P. Cheang, “Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite / Ti – 6Al – 4V composite coatings in simulated body fluid”, Biomaterials, Vol. 25, pp. 3177-3185, 2004.
[54] X. Lu & Y. L. Ã, “Theoretical analysis of calcium phosphate precipitation in simulated body fluid”, Biomaterials, Vol. 26, pp. 1097-1108, 2005.
[55] C. E. Wen, “Hydroxyapatite / titania sol – gel coatings on titanium – zirconium alloy for biomedical applications q”, Acta Biomaterialia, Vol. 3, pp. 403-410, 2007.
[56] B. Zhang & C. Tat, “Hydroxyapatite-anatase-carbon nanotube nanocomposite coatings fabricated by electrophoretic codeposition for biomedical applications”, Journal of Materials, Vol. pp. 2249-2259, 2011.
[57] H. C. Man, K. Y. Chiu, F. T. Cheng & K. H. Wong, “Adhesion study of pulsed laser deposited hydroxyapatite coating on laser surface nitrided titanium”, Thin Solid Films, Vol. 517, pp. 5496-5501, 2009.
[58] C. Kim, M. R. Kendall, M. A. Miller, C. L. Long, P. R. Larson, M. Beth, A. S. Madden & A. C. Tas, “Comparison of titanium soaked in 5 M NaOH or 5 M KOH solutions”, Materials Science & Engineering C, Vol. 33, pp. 327-339, 2013.
[59] Y. Yuan & T. R. Lee, “Contact Angle and Wetting Properties”, in: G. Bracco, B. Holst (Eds.) Surface Science Techniques, Springer Berlin Heidelberg, pp. 3-34, 2013.
[60] T. Sun & M. Wang, “Applied Surface Science Low-temperature biomimetic formation of apatite / TiO 2 composite coatings on Ti and NiTi shape memory alloy and their characterization”, Vol. 255, pp. 396-400, 2008.
[61] O. Yamamoto, K. Alvarez, T. Kikuchi & M. Fukuda, “Fabrication and characterization of oxygen-diffused titanium for biomedical applications”, Acta Biomaterialia, Vol. 5, pp. 3605-3615, 2009.