Impact of Calcium Supplementation on Photosynthetic Pigments, Compatible Osmolytes Contents and Membrane Stability Index in Triticale (x Triticosecale Wittmack) Exposed to Salinity Stress
الموضوعات :
Malihe Jahani
1
,
Mohammad Reza Hadi
2
,
Mojtaba Jafarinia
3
,
Sedighe Jahani
4
1 - Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran|Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
2 - Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
3 - Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
4 - Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
تاريخ الإرسال : 08 الأحد , شوال, 1441
تاريخ التأكيد : 11 السبت , صفر, 1443
تاريخ الإصدار : 12 الخميس , ذو القعدة, 1444
الکلمات المفتاحية:
triticale,
Carbohydrate,
ameliorative impact,
sodium-calcium interactions,
ملخص المقالة :
In many areas, salinization is considered as one of the most serious dangers to environmental resources and human health. Calcium has a crucial role in plant resistance to salinity stress. In order to investigate the impact of calcium supplementation on photosynthetic pigments, compatible osmolytes contents and membrane stability index (MSI) in triticale (x Triticosecale Wittmack) exposed to salinity stress, an experiment as a completely randomized design with 3 replications in greenhouse condition (25 ± 2°C, 35% relative humidity, 16-hour photoperiod) was conducted. The seeds were germinated in soil. One week old triticale seedlings (with two leaves) were imposed by 0, 50, 100 and 150 mmol L-1 NaCl and 0, 6 and 10 mmol L-1 CaCl2 for 5 weeks and assayed for some morpho-physiological parameters including fresh weight (FW) and dry weight (DW) of shoot, photosynthetic pigments (chlorophyll (Chl) a and Chl b, total Chl and carotenoids (Car)) contents, proline and glycine betaine (GB) contents, soluble sugars and starch contents and MSI in leaves. Results showed that with incrementing salinity meaningfully decremented FW and DW of shoot, photosynthetic pigments, starch content and MSI while proline, GB and soluble sugars contents incremented in leaves. Calcium treatment meaningfully incremented FW and DW of shoot, photosynthetic pigments, starch content and MSI but caused a meaningful decline in proline, GB and soluble sugars contents in leaves. It can be concluded that calcium had exerted an ameliorative impact on triticale under salinity stress. Maximum ameliorative impact of calcium was observed in plants exposed to 6 mmol L-1 CaCl2.
المصادر:
Polash M.A.S., Sakil M.A., Hossain M.A., 2019. Plants responses and their physiological and biochemical defense mechanisms against salinity: a review. The Journal of the Society for Tropical Plant Research. 6(2), 250-274. doi: 10.22271/tpr.2019.v6.i2.035
Kader M.A., Lindberg S., 2010. Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signaling and Behavior. 5(3), 233-238. doi: 10.4161/psb.5.3.10740
Pravina P., Sayaji D., Avinash M., 2013. Calcium and its role in human body. International Journal of Research in Pharmaceutical and Biomedical Sciences. 4(2), 659-668.
White P.J., Broadley M.R., 2003. Calcium in plants. Annals of Botany. 92(4), 487-511. https://doi .org/10.1093/aob/mcg164
Hadi M.R., Karimi N., 2012. The role of calcium in plants salt tolerance. Journal of Plants' Nutrition. 35(13), 2037-2054. https://doi.org/10.1080/01904167.2012.717158
Ahmad P., Abd_Allah E.F., Alyemeni M.N., Wijaya L., Alam P., Bhardwaj R., Siddique K.H.M., 2018. Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate–glutathione cycle and secondary metabolites. Scientific Reports. 8, 13515. https:// doi.org/10. 1038/s41598-018-31917-1
Manishankar P., Wang N., Köster P., Alatar A.A., Kudla J., 2018. Calcium signaling during salt stress and in the regulation of ion homeostasis, Journal of Experimental Botany. 69(17), 4215-4226.
Parihar P., Singh S., Singh R., Singh V.P., Prasad S.M., 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research. 22(6), 4056-4075. doi: 10.1007/s11356-014-3739-1
Gupta B., Huang B., 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics. 2014(1), 1-18.
Cha-um S., Singh H.P., Samphumphuang T., Kirdmanee C., 2012. Calcium-alleviated salt tolerance in indica rice (Oryza sativa L. spp. indica): physiological and morphological changes. Australian Journal of Crop Science. 6(1), 176-182. https:// search.informit.com. au/ documentSummary; dn=054025225882532;res=IELHSS
Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A., Diaz-Vivancos P., Sanchez-Blanco M.J., Hernandez J.A., 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy. 7(1), 1-38. https://doi .org/ 10.3390/ agronomy7010018
Nxele X., Klein A., Ndimba B.K., 2017. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany. 108, 261-266. https:// doi.org/10.1016 /j.sajb.2016.11.003
Parvaiz A., Satyawati S., 2008. Salt stress and phyto-biochemical responses of plants – a review. Plant Soil and Environment. 54(3), 89-99.
Suprasanna P., Nikalje G.C., Rai A.N., 2016. Osmolyte Accumulation and Implications in Plant Abiotic Stress Tolerance. In: Iqbal N., Nazar R., A. Khan N. (eds) Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2616-1_1
Alhasnawi A.N., 2019. Role of proline in plant stress tolerance: a mini review. Research on Crops. 20(1), 223-229. doi: 10.31830/2348-7542.2019.032
Amuthavalli P., Anbu D., Sivasankaramoorthy S., 2012. Effect of calcium chloride on growth and biochemical constituents of cotton (Gossypium hirsutum L.) under salt stress. International Journal of Research in Botany. 2(3), 9-12.
Zhou G., Ma B.L., 2012. Calcium addition affects germination and early seedling growth of sweet sorghum under saline conditions. Agricultural Science and Technology. 13(12), 2538-2543. http:// eprints.icrisat. ac.in/id/eprint/9831
McGoverin C.M., Snyders F., Muller N., Botes W., Fox G., Manley M., 2011. A review of triticale uses and the effect of growth environment on grain quality. Journal of the Science of Food and Agriculture. 91(7), 1155-1165. doi: 10.1002/jsfa.4338
Mergoum M., Sapkota S., ElDoliefy A.E.A., Naraghi S.M., Pirseyedi S., Alamri M.S., AbuHammad W., 2019. Triticale (x Triticosecale Wittmack) Breeding. In: Al-Khayri J, Jain S, Johnson DV (Eds). Advances in Plant Breeding Strategies: Cereals. Springer, Cham. doi: 10.1007/978-3-030-23108-8
Langó B., Bóna L., Ács E., Tömösközi S., 2017. Nutritional features of triticale as affected by genotype, crop year, and location. Acta Alimentaria. 46(2), 238-245. https://doi.org/10.1556/066.2017.46.2.14
Chen H., Chen Z., Fu Y., Liu J., Lin S., Zhang Q., Liu Y., Wu D., Lin D., Han G., Wang L., Qin W., 2019. Structure, antioxidant, and hypoglycemic activities of arabinoxylans extracted by multiple methods from triticale. Antioxidants. 8(12), 584. doi: 10.3390/antiox8120584
Deng C., Zhang Z., Yan G., Wang F., Zhao L., Liu N., Abudurezike A., Li Y., Wang W., Shi S., 2020. Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress. Scientific Reports. 10, 1-9. https://doi.org/10.1038/s41598-020-77686-8
Lichtenthaler H.K., 1987. Chlorophylls and carotenoids; pigments of photosynthetic biomembranes. In: Colowick SP, Kaplan NO (eds). Methods in Enzymology, Academic Press, San Diego, New York. 148, 350-382.
Bates L.S., Waldren R.P., Teare I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39(1), 205-207. https://doi.org/10. 1007/BF00018060
Grieve C.M., Grattan, S.R., 1983. Rapid assayfor determination of water soluble quaternary ammonium compounds. Plant and Soil. 70, 303-307. https://doi. org/10.1007/BF02374789
Kochert G., 1978. Carbohydrate determination by the phenol-sulfuric acid method. In: Hellebust JA, Craigie JS [eds.], Handbook of Phycological Methods: Physiological and Biochemical Methods. 95-97. Cambridge University Press, Cambridge.
Premachandra G.S., Saneoka H., Ogata S., 1990. Cell membrane stability, an indicator of drought tolerance as affected by applied nitrogen in soybean. Journal of agricultural science. (Cambridge, Eng.). 115, 63-66.
Parida A.K., Das A.B., 2005. Salt tolerance and salinity effects on plants. a review. Ecotoxicology and Environmental Safety. 60(3), 324-349. doi: 10.1016/j.ecoenv.2004.06.010
Parvin K., Ahamed K.U., Islam M.M., Haque M.N., 2015. Response of tomato plant under salt stress: role of exogenous calcium. Journal of Plant Sciences. 10(6), 222-233. doi: 10.3923/jps.2015.222.233
Ahmad P., Abd Allah E.F., Alyemeni M.N., Wijaya L., Alam P., Bhardwaj R., Siddique K.H.M., 2018. Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate-glutathione cycle and secondary metabolites. Sci Rep. 8(1), 13515. doi: 10.1038/s41598-018-31917-1
Tanveer K., Gilani S., Hussain Z., Ishaq R., Adeel M., Ilyas N., 2020. Effect of salt stress on tomato plant and the role of calcium. Journal of Plant Nutrition. 43(1), 28-35. https://doi.org/10.1080/01904167.2019.1659324
Jahani S., Lahouti M., Jahani M., 2014. Investigation Na+-Ca2+ interaction on biomass and enzymes activity of peroxidase and polyphenol oxidase in leaf of barley (Hordeum vulgare L.). Crop Physiology Journal. 5(20), 15-24. http://cpj.iauahvaz.ac.ir/article-1-186-en.html
Shariat Jafari M.H., Kafi M., Astaraie A.R., 2009. Interactive effects of NaCl induced salinity, calcium and potassium on physiomorphological traits of sorghum (Sorghum bicolor L.). Pakistan Journal of Botany. 41(6), 3053-3063.
Sivasankaramoorthy S., 2013. Effect of supplementary calcium enhances plant growth, photosynthetic pigments and uptake of nutrient in Oryza sativa L. under NaCl stress. International Journal of Chemical and Life Sciences. 2(7), 1189-1192.
Elkelish A.A., Alnusaire T.S., Soliman M.H., Gowayed S., Senousy H.H., Fahad S., 2019. Calcium availability regulates antioxidant system, physio-biochemical activities and alleviates salinity stress mediated oxidative damage in soybean seedlings. Journal of Applied Botany and Food Quality. 92, 258-266. doi: 10.5073/JABFQ.2019.092.036
Cramer G.R., 2002. Sodium-calcium interactions under salinity stress. Salinity: Environment - Plants - Molecules. Chapter 10, 205-227. doi: 10.1007/0-306-48155-3_10
Yücel C.N., Heybet E.H., 2016. Salicylic acid and calcium treatments improves wheat vigor, lipids and phenolics under high salinity. Acta Chimica Slovenica. 63(4), 738-746. doi: 10.17344/acsi.2016.2449
Yousuf P.Y., Ahmad A., Hemant Ganie A.H., Aref I.M., Iqbal M., 2015. Potassium and calcium application ameliorates growth and oxidative homeostasis in salt-stressed Indian mustard (Brassica juncea) plants. Pakistan Journal of Botany. 47(5), 1629-1639.
Mashela P.W., Aluvilu A., Pofu K.M., 2012. Influence of sodium chloride with and without calcium chloride on growth and productivity of chilli pepper. International Journal of AgriScience. 2(11), 1001-1008.
Tabatabaeian J., 2014. Effect of calcium nutrition on reducing the effects of salinity on tomato plant. American Journal of Plant Nutrition and Fertilization Technology. 4(1), 11-17. doi: 10.3923/ajpnft.2014.11.17
Tahjib-Ul-Arif M., Roy P.R., Al Mamun Sohag A., Afrin S., Rady M.M., Afzal Hossain M., 2018. Exogenous calcium supplementation improves salinity tolerance in BRRI Dhan28; a salt-susceptible high-yielding Oryza sativa cultivar. Journal of Crop Science and Biotechnology. 21, 383-394. https://doi.org/10.1007/s12892-018-0098-0
Steduto P., Albrizio R., Giorio P., Sorrentino G., 2000. Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environmental and Experimental Botany. 44(3), 243-255. doi: 10.1016/s0098-8472(00)00071-x
Gunes A., Inal A., Alpaslan M., Eraslan F., Bagci E.G., Cicek N., 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology. 164(6), 728-736. doi: 10.1016/j.jplph.2005.12.009.
Xu D., Wang W., Gao T., Fang X., Gao X., Li J., Bu H., Mu J., 2017. Calcium alleviates decreases in photosynthesis under salt stress by enhancing antioxidant metabolism and adjusting solute accumulation in Calligonum mongolicum. Conservation Physiology, 5(1), cox060, https://doi.org/10.1093/conphys/cox060
Ashraf M., Foolad M., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. 59(2), 206-216. doi: 10.1016/j.envexpbot.2005.12.006
Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A., 2012. Role of proline under changing environments: a review. Plant signaling & behavior. 7(11), 1456-1466. doi: 10.4161/psb.21949
Jaleel C.A., Manivannan P., Sankar B., Kishorekumar A., Panneerselvam R., 2007. Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. Comptes Rendus Biologies. 330(9), 674-683. doi: 10.1016/j.crvi.2007.07.002
Rahman A., Nahar K., Hasanuzzaman M., Fujita M., 2016. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Frontiers in Plant Science. 7, 609. https://doi.org/10.3389/fpls.2016.00609
Manivannan P., Jaleel C.A., Sankar B., Somasundaram R., Murali P.V., Sridharan R., Panneerselvam R., 2007. Salt stress mitigation by calcium chloride in Vigna radiata L. Wilczek. Acta Biologica Cracoviensia Series Botanica. 49(2), 105-109.
Girija C., Smith B.N., Swamy P.M., 2002. Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycine betaine in peanut (Arachis hypogaea L.). Environmental and Exprimental Botany. 47(1), 1-10. https://doi.org/10.1016/S0098-8472(01)00096-X
El-Samad H.M.A., Barakat N.A.M., 2013. The physiological mechanisms of calcium chloride application on broad bean plants grown under salinity stress. Journal of Ecology and the Natural Environment. 5(12), 371-377. doi: 10.5897/JENE10.089
Giri J., 2011. Glycine betaine and abiotic stress tolerance in plants. Plant Signaling & Behavior. 6(11), 1746-1751. doi: 10.4161/psb.6.11.17801
Singh M., Kumar J., Singh S., Singh V.P., Prasad S.M., 2016. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Bio/Technology. 14(3), 407-426.
Umar J., Aliyu A., Shehu K., Abubakar L., 2018. Influence of salt stress on proline and glycine betaine accumulation in tomato (Solanum lycopersicum L.). Journal of Horticulture and Plant Research. 1, 19-25. doi: 10.18052/www.scipress.com/JHPR.1.19
Hisao T., 1973. Plant responses to water stress. Annual Review of Plant Physiology. 24, 519-570.
Amirjani M.R., 2011. Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. International Journal of Botany. 7(1), 73-81. doi: 10.3923/ijb.2011.73.81
Silva J.V., Lacerda C.F., Costa P.H.A., Filho J.E., Enéas-Filho G., Enéas G.F., Prisco J.T., 2003. Physiological responses of NaCl stressed cowpea plants grown in nutrient solution supplemented with CaCl2. Brazilian Journal of Plant Physiology. 15(2), 99-105. doi: 10.1590/S1677-04202003000200005
Tuna A.L., Kaya C., Ashraf M., Altunlu H., Yokas I., Yagmur B., 2007. The Effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany. 59(2), 173-178. doi: 10.1016/j.envexpbot.2005.12.007
Larbi A., Kchaou H., Gaaliche B., Gargouri K., Boulal H., Morales F., 2020. Supplementary potassium and calcium improves salt tolerance in olive plants. Scientia Horticulturae. 260, 1-10. doi: 10.1016/j. scienta. 2019.108912