Evaluation of Authenticity in Honey Samples from Qazvin, Iran
الموضوعات :Masoud Kazeminia 1 , Razzagh Mahmoudi 2 , Ehsan Aali 3 , Peyman Ghajarbygi 4
1 - PhD Student of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
2 - Professor, Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
3 - Assistant Professor, Faculty of Medicine, Dept. of Pharmacology, Qazvin University of Medical Sciences, Qazvin, Iran
4 - Assosiate Professor, Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
الکلمات المفتاحية: Fraud, Qazvin, Physicochemical, Honey, authenticity, Microbiological,
ملخص المقالة :
Adulteration of honey is a major problem in the world, due to its high nutritional value and the expensive cost of honey. Thus, the quality of honey produced in different regions must be assessed to protect the rights of consumers. The study aims to investigate the physicochemical (hydroxymethylfurfural: HMF, moisture, ash, electrical conductivity, pH, total acidity, diastase activity, and reduction sugar), and microbiological (clostridium perfringens, molds, and osmotolerant yeasts) parameters of 43 honey samples. All the honey samples were collected from Qazvin province, Iran. Our results demonstrate that pH and acidity values in all of the honey samples were in the accepted limit and other physicochemical parameters include HMF (44.18%), reduction sugar (9.30%), moisture (2.32%), sucrose (53.48%), diastase activity (58.13%), fructose/glucose ratio (25.58%), electrical conductivity (9.30%) and ash (4.65%) were below the acceptable quality level. All the honey samples were in the acceptable range in terms of microbial quality (yeast, fungi and, Clostridia). All the honey samples are within expected microbial levels but in non-standard physicochemical conditions. Our results indicate that you can use fast, inexpensive and safe tests for identifying the adulteration in a variety of honeys (commercial and non-commercial). These measurements should be widely practiced by governmental organizations determine a fair and reasonable price for each product.
1. Rodríguez-Flores M.S., Escuredo O., Míguez M., Seijo M.C., 2019. Differentiation of oak honeydew and chestnut honeys from the same geographical origin using chemometric methods. Food chemistry. 297124979.
2. Bryant Jr V.M., Jones G.D., 2001. The r‐values of honey: Pollen coefficients. Palynology. 25(1), 11-28.
3. Akbulut M., Özcan M.M., Çoklar H., 2009. Evaluation of antioxidant activity, phenolic, mineral contents and some physicochemical properties of several pine honeys collected from Western Anatolia. International Journal of Food Sciences and Nutrition. 60(7), 577-589.
4. Escuredo O., Seijo M.C., in, Multidisciplinary Digital Publishing Institute, 2019.
5. Smanalieva J., Senge B., 2009. Analytical and rheological investigations into selected unifloral German honey. European Food Research and Technology. 229(1), 107-113.
6. Bogdanov S., Haldimann M., Luginbühl W., Gallmann P., 2007. Minerals in honey: environmental, geographical and botanical aspects. Journal of Apicultural Research. 46(4), 269-275.
7. Alvarez-Suarez J.M., González-Paramás A.M., Santos-Buelga C., Battino M., 2010. Antioxidant characterization of native monofloral Cuban honeys. Journal of Agricultural and Food Chemistry. 58(17), 9817-9824.
8. Al M.L., Daniel D., Moise A., Bobis O., Laslo L., Bogdanov S., 2009. Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry. 112(4), 863-867.
9. Lachman J., Orsák M. Hejtmánková A., Kovářová E., 2010. Evaluation of antioxidant activity and total phenolics of selected Czech honeys. LWT-Food Science and Technology. 43(1), 52-58.
10. Liu J.R., Ye Y.L., Lin T.Y., Wang Y.W., Peng C.C., 2013. Effect of floral sources on the antioxidant, antimicrobial, and anti-inflammatory activities of honeys in Taiwan. Food chemistry. 139(1), 938-943.
11. Isla M.I., Craig A., Ordoñez R., Zampini C., Sayago J., Bedascarrasbure E., Alvarez A., Salomón V., Maldonado L., 2011. Physico chemical and bioactive properties of honeys from Northwestern Argentina. LWT-Food Science and Technology. 44(9), 1922-1930.
12. Cushnie T.T., Lamb A.J., 2005. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents. 26(5), 343-356.
13. Vorlova L., Karpiskova R., Chabiniokova I., Kalabova K., Brazdova Z., 2005. The antimicrobial activity of honeys produced in the Czech Republic. Czech Journal of Animal Science. 50(8), 369.
14. Sivakesava S., Irudayaraj J., 2002. Classification of simple and complex sugar adulterants in honey by mid‐infrared spectroscopy. International Journal of Food Science & Technology. 37(4), 351-360.
15. Puscas A., Hosu A., Cimpoiu C., 2013. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. Journal of Chromatography A. 1272132-135.
16. Spiteri M., Jamin E., Thomas F., Rebours A., Lees M., Rogers K.M., Rutledge D.N., 2015. Fast and global authenticity screening of honey using 1H-NMR profiling. Food Chemistry. 18960-66.
17. Wang J., Li Q.X., 2011. Chemical composition, characterization, and differentiation of honey botanical and geographical origins. Advances in food and nutrition research. 6289-137.
18. Lazarević K.B., Andrić F., Trifković J., Tešić Ž., Milojković-Opsenica D., 2012. Characterisation of Serbian unifloral honeys according to their physicochemical parameters. Food Chemistry. 132(4), 2060-2064.
19. Bogdanov S., Martin P., Lullmann C., 2002. Harmonised methods of the international honey commission. Swiss Bee Research Centre, FAM, Liebefeld.
20. Mendes E., Proença E.B., Ferreira I., Ferreira M., 1998. Quality evaluation of Portuguese honey. Carbohydrate polymers. 37(3), 219-223.
21. Commission C.A., 2001. Revised Codex Standard for Honey, Codex Standard 12-1981, Rev. 1 (1987), Rev. 2 (2001), Joint FAO/WHO Food Standards Programme. 24th Session, FAO Headquarters, Rome, Italy.
22. Horwitz W., Albert R., 2006. The Horwitz ratio (HorRat): a useful index of method performance with respect to precision. Journal of AOAC International. 89(4), 1095-1109.
23. Vorlova L., Pridal A., 2002. Invertase and diastase activity in honeys of Czech provenience. Acta Universitatis Agriculturae et Silviculturae Sbornik Mendelovy Zemedelske a Lesnicke Mendelianae Brunensis. 557-66.
24. Fernández R., Ciccarelli A., de Centorbi O., Centorbi H., Rosetti F., de Jong L., Demo N., 1999. Infant Botulism in Argentina, 1982––1997. Anaerobe. 5(3-4), 177-179.
25. ISIRI, 2013. Honey- Specification and test methods. Institute of Standards and Industrial Research of Iran, 92, 7th revision.
26. Tosi E., Ciappini M., Re E., Lucero H., 2002. Honey thermal treatment effects on hydroxymethylfurfural content. Food Chemistry. 77(1), 71-74.
27. Olawode E.O., Tandlich R., Cambray G., 2018. 1H-NMR profiling and chemometric analysis of selected honeys from South Africa, Zambia, and Slovakia. Molecules. 23(3), 578.
28. Karimov E., Xalilzad Z., Hobbi P., Alekperov J., 2014. Quality evaluation of honey from the different region of Azerbaijan. Journal of Food Chemistry and Nutrition. 2(2), 71-79.
29. Finola M.S., Lasagno M.C., Marioli J.M., 2007. Microbiological and chemical characterization of honeys from central Argentina. Food Chemistry. 100(4), 1649-1653.
30. Gairola A., Tiwari P., Tiwari J., 2013. Physico-chemical properties of Apis cerana-indica F. honey from Uttarkashi district of Uttarakhand, India. Journal of Global Biosciences ISSN. 2(1), 20-25.
31. Khalafi R., Goli S.A.H., Behjatian M., 2016. Characterization and classification of several monofloral Iranian honeys based on physicochemical properties and antioxidant activity. International Journal of Food Properties. 19(5), 1065-1079.
32. Tasnim T., Inam A., Hossain M., Akhter P., 2018. Evaluation of Physiochemical Properties of Nigella Honey from Shariatpur, Bangladesh. 5(1&2), 1-7.
33. Shobham K.K.C., Nayar J., 2017. Physicochemical analysis of some commercial honey samples from Telangana. Indian Journal of Nutrition. 4(1), 1-4.
34. da C Azeredo L., Azeredo M., De Souza S., Dutra V., 2003. Protein contents and physicochemical properties in honey samples of Apis mellifera of different floral origins. Food Chemistry. 80(2), 249-254.
35. Cervantes M.R., Novelo S.G., Duch E.S., 2000. Effect of the temporary thermic treatment of honey on variation of the quality of the same during storage. Apiacta. 35(4), 162-70.
36. Mouteira M., Malacalza N., Lupano C., Baldi B., 2003. Analysis of honey produced in the province of Buenos Aires, Argentine, from 1997 to 2000. Proc. 37th Int. Apic. Congr., 28 Oct – 1 Nov 2001, Durban, South Africa.
37. Ouchemoukh S., Louaileche H., Schweitzer P., 2007. Physicochemical characteristics and pollen spectrum of some Algerian honeys. Food Control. 18(1), 52-58.
38. Saxena S., Gautam S., Sharma A., 2010. Physical, biochemical and antioxidant properties of some Indian honeys. Food Chemistry. 118(2), 391-397.
39. Nayik G.A., Nanda V., 2015. Physico-chemical, enzymatic, mineral and colour characterization of three different varieties of honeys from Kashmir valley of India with a multivariate approach. Polish Journal of Food and Nutrition Sciences. 65(2), 101-108.
40. Khalil M.I., Moniruzzaman M., Boukraâ L., Benhanifia M., Islam M.A., Islam M.N., Sulaiman S.A., Gan S.H., 2012. Physicochemical and antioxidant properties of Algerian honey. Molecules. 17(9), 11199-11215.
41. Fredes C., Montenegro G., 2006. Heavy metal and other trace elements contents in honey bee in Chile. Cien Inv Agr.(in English) 33(1), 50-58. Ciencia e Investigación Agraria. 33(1), 50-58.
42. Omafuvbe B., Akanbi O., 2009. Microbiological and physico-chemical properties of some commercial Nigerian honey. African Journal of Microbiology Research. 3(12), 891-896.
43. Gomes S., Dias L.G., Moreira L.L., Rodrigues P., Estevinho L., 2010. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food and Chemical Toxicology. 48(2), 544-548.
44 Yilmaz H., Kufrevioglu I., 2000. Composition of honeys collected from eastem Anatolia and effect of storage on hydroxymethylfurfural content and diastase activity. Türk J Agric Forst. 33347-349.
45 Junzheng P., Changying J., 1998. General rheological model for natural honeys in China. Journal of Food engineering. 36(2), 165-168.
46. Duman A., Sezer C., Oral N., 2008. Kars’ ta Satis a Sunulan Suzme Ballarin Kalite Niteliklerinin Aras tirilmasi. Kafkas Universitesi Veteriner Fakultesi Dergisi. 1489-94.
47. Alimentarius C., 2001. Revised codex standard for honey. Codex Stan. 121982.
48. Baroni M.V., Arrua C., Nores M.L., Fayé P., del Pilar Díaz M., Chiabrando G.A., Wunderlin D.A., 2009. Composition of honey from Córdoba (Argentina): Assessment of North/South provenance by chemometrics. Food Chemistry. 114(2), 727-733.
49. Escuredo O., Seijo M.C., Fernández‐González M., 2011. Descriptive analysis of Rubus honey from the north‐west of Spain. International Journal of Food Science & Technology. 46(11), 2329-2336.
50. Pasias I.N., Kiriakou I.K., Proestos C., 2017. HMF and diastase activity in honeys: A fully validated approach and a chemometric analysis for identification of honey freshness and adulteration. Food Chemistry. 229425-431.
51. Voldřich M., Rajchl A., Čížková H., Cuhra P., 2009. Detection of Foreign enzyme addition into the adulterated honey. Czech J Food Sci. 27280-282.
52. Machado A.M., Miguel M.G., Vilas-Boas M., Figueiredo A.C., 2020. Honey Volatiles as a Fingerprint for Botanical Origin—A Review on their Occurrence on Monofloral Honeys. Molecules. 25(2), 374.
53 Mateo R., Bosch-Reig F., 1998. Classification of Spanish unifloral honeys by discriminant analysis of electrical conductivity, color, water content, sugars, and pH. Journal of Agricultural and Food Chemistry. 46(2), 393-400.
54. Španik N.J.O.V.I., 2014. Identification of volatile organic compounds in honeydew honeys using comprehensive gas chromatography. Journal of Food and Nutrition Research. 53(4), 353-362.
55. Cantarelli M., Pellerano R., Marchevsky E., Camiña J., 2008. Quality of honey from Argentina: Study of chemical composittion and trace elements. The Journal of Argentine Chemical Society. 96(1-2), 33-41.
56. Zerrouk S.H., Fallico B.G., Arena E.N., Ballistreri G.F., Boughediri L.A., 2011. Quality evaluation of some honey from the central region of Algeria. Jordan Journal of Biological Sciences. 4(4), 243-248.
57. Ünal C., Küplülü Ö., 2006. Chemical quality of strained honey consumed in Ankara. Ankara Universitesi Veteriner Fakultesi Dergisi. 531-4.
58. Jahed K.G.R., Kamkar A., 2005. A survey of physico-chemical properties of produced honey in garmsar city in 2003. Iranian Journal of Food Science and Technology. 2(1), 35-41.
59. Velásquez Giraldo A., Vélez Acosta L., Zuluaga Gallego R., 2013. Physicochemical and microbiological characterization of Apis mellifera sp. honey from southwest of Antioquia in Colombia. Ingeniería y Ciencia. 9(18), 61-74.