Some algebraic properties of Lambert Multipliers on $L^2$ spaces
الموضوعات :
A. Zohri
1
,
S. Khalil Sarbaz
2
1 - Faculty of Mathematical Sciences, Payame Noor University, P. O. BOX 19395-3697, Tehran, I. R. Iran
2 - Faculty of Mathematical Sciences, Payame Noor University, P. O. BOX 19395-3697, Tehran, I. R. Iran
تاريخ الإرسال : 27 الجمعة , ذو القعدة, 1436
تاريخ التأكيد : 16 الأحد , ربيع الأول, 1437
تاريخ الإصدار : 28 الثلاثاء , صفر, 1435
الکلمات المفتاحية:
conditional expectation,
multipliers,
multiplication operators,
composition operators,
ملخص المقالة :
In this paper, we determine the structure of the space of multipliers of the rangeof a composition operator $C_\varphi$ that induces by the conditional expectation between two $L^p(\Sigma)$spaces.
المصادر:
[1] C. Burnap, I. L. B. Jung and A. Lambert, Separating partial normality classes with composition operators, J. Operator Theory 53, No. 2 (2005), 381-397.
[2] J. T. Campbell, M. Embry-Wardrop, R. J. Fleming, and S. K. Narayan, Normal and quasinormal weighted composition operators, Glasgow Math. J. 33, No. 3 (1991), 275-279.
[3] J. D. Herron, Weighted conditional expectation operators on Lp-spaces, UNC Charlotte Doctoral Dissertation.
[4] M. R. Jabbarzadeh and S. Khalil Sarbaz, Lambert multipliers between Lp-spaces, Czech. Math. J. 60 (135), No. 1 (2010), 31-43.
[5] A. Lambert, Hyponormal composition operators, Bull. London Math. Soc. 18, No. 4 (1986), 395-400.
[6] A. Lambert and T. G. Lucas, Nagatas principle of idealization in relation to module homomorphisms and conditional expectations, Kyungpook Math. J. 40, No. 2 (2000), 327-337.