Existence of fixed point theorems for complex partial b-metric spaces using S-contractive mapping
الموضوعات :S. Tiwari 1 , L. Rathour 2 , L. Mishra 3
1 - Department of Mathematics, Lukhdhirji Engineering College, Morbi-363642, Gujarat, India
2 - Ward number-16, Bhagatbandh, Anuppur, 484224, Madhya Pradesh, India
3 - Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
الکلمات المفتاحية: fixed points, weakly increasing mappings, S-contraction, complex partial b-metric space,
ملخص المقالة :
In this paper, we prove some results on complex partial b-metric space $(\Re, p_{b}^{c})$, which are more generalization of S-contractive mappings. Also, we expand weakly increasing mappings of S-contractive for two self-mappings and prove some common fixed point theorems with supported examples in complete partial b-metric spaces $(\Re, p_{b}^{c})$.
[1] H. Alsulami, E. Karapinar, H. Piri, Fixed points of generalised F-Suzuki type contraction in complete b-metric space, Dis. Dyn. Nat. Soc. (2015), 2015:969726.
[2] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim. 32 (3) (2011), 243-253.
[3] I. A. Bakhtin, The contraction mappings principle in quasi-metric spaces, Functional Anal. 30 (1989), 26-37.
[4] I. Beg, G. A. Joseph , M. Gunaseelan, Fixed point on complex partial b-metric spaces with application to a system of Urysohn type integral equations, Novi Sad. J. Math. (2021), In press.
[5] K. P. Chi, E. Karapinar, T. D. Thanh, A generalized contraction principle in partial metric spaces, Math. Comput. Modelling. 55 (2012), 1673-1681.
[6] S. Czerwick, Contraction mappings in b-metric spaces, Acta. Math. Inform. Uni. Ostrav. (1) (1993), 5-11.
[7] P. Dhivya, M. Marudai, Common fixed point theorems for mappings satisfying a contractive condition of rational expression on a ordered complex partial metric space, Cogent Mathematics. 4 (2017), 1-10.
[8] O. Ege, Complex valued rectangular b-metric spaces and an application to linear equations, J. Nonlinear Sci. Appl. 8 (6) (2015), 1014-1021.
[9] M. Gunaseelan, Generalized fixed point theorems on complex partial b-metric space, Int. J. Research. Analytical. Reviews. 6 (2) (2019), 621i-625i.
[10] R. Koleva, B. Zlatanov, On fixed points for Chatterjea’s maps in b-metric spaces, Turkish J. Anal. Number Theory. 4 (2) (2016), 31-34.
[11] S. G. Matthews, Partial metric topology, Annals of the New York Academy of Sciences. 728 (1994), 183-197.
[12] S. G. Matthews, Partial Metric Topology, Research Report 212, University of Warwick, 1992.
[13] L. N. Mishra, S. K. Tiwari, V. N. Mishra, Fixed point theorems for generalized weakly S-contractive mappings in partial metric spaces, J. Appl. Anal. Comput. 5 (4) (2015), 600-612.
[14] L. N. Mishra, S. K. Tiwari, V. N. Mishra, I. A. Khan, Unique fixed point theorems for generalized contractive mappings in partial metric spaces, J. Function Spaces. (2015), 2015:960827.
[15] K. P. R. Rao, P. R. Swamy, J. R. Prasad, A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Stat. Research. 1 (1) (2013), 1-8.
[16] D. P. Shukla, S. K. Tiwari, Unique fixed point theorem for weakly S-contractive mappings, Gen. Math. Notes. 4 (1) (2015), 28-34.
[17] S. K. Tiwari, L. N. Mishra, Some results on cone metric spaces introduced by Jungck multistep iterative scheme, Global J. Engin. Sci. Res. 6 (3) (2019), 284-295.
[18] J. Vujakovic, H. Aydi, S. Radenovic, A. Mukheimer, Some remarks and new results in ordered partial b-metric spaces, Σ Mathematics. 7 (4) (2019), 1-10.
[19] O. Yamaod, W. Sintunavarat, On new orthogonal contractions in b-metric spaces, Inter. J. Pure. Math. 5 (2018), 37-40.