Topological complexities of finite digital images
الموضوعات :
1 - Department of Mathematics, Faculty of Science, Ege University, Izmir, Turkey
2 - Department of Mathematics, Faculty of Science, Ege University, Izmir, Turkey
الکلمات المفتاحية: Topological complexity, higher topological complexity, digital topology,
ملخص المقالة :
Digital topological methods are often used in computing the topological complexity of digital images. We give new results on the relation between reducibility and digital contractibility in order to determine the topological complexity of a digitally connected finite digital image. We present all possible cases of the topological complexity TC of a finite digital image in $\mathbb{Z}$ and $\mathbb{Z}^{2}$. Finally, we determine the higher topological complexity TC$_{n}$ of finite irreducible digital images independently of the number of points for $n > 1$.
[1] C. Berge. Graphs and Hypergraphs, 2nd edition, Amsterdam, Netherlands, 1973.
[2] A. Borat. T, Vergili, Digital Lusternik-Schnirelmann category, Turk. J. Math. 42 (2018), 1845-1852.
[3] L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vis. 10 (1999), 51-62.
[4] L. Boxer, Digitally continuous functions, Pattern Recognit. Lett. 15 (1994), 833-839.
[5] L. Boxer, Digital products, wedges, and covering spaces, J. Math. Imaging Vis. 25 (2006), 169-171.
[6] L. Boxer, Fixed point sets in digital topology 2, Appl. Gen. Topol. 21 (1) (2020), 111-133.
[7] L. Boxer, Homotopy properties of sphere-like digital images, J. Math. Imaging Vis. 24 (2006), 167-175.
[8] L. Boxer, Properties of digital homotopy, J. Math. Imaging Vis. 22 (2005), 19-26.
[9] L. Boxer, I. Karaca, Fundamental groups for digital products, Adv. Appl. Math. Sci. 11 (4) (2012) 161-180.
[10] L. Boxer, P. C. Staecker, Fixed point sets in digital topology 1, Appl. Gen. Topol. 21 (1) (2020), 87-110.
[11] L. Chen, Discrete Surfaces and Manifolds: A Theory of Digital-Discrete Geometry and Topology, Scientific & Practical Computing, 2004.
[12] L. Chen, Y. Rong, Digital topological method for computing genus and the Betti numbers, Topol. Appl. 157 (12) (2010), 1931-1936.
[13] O. Ege, I. Karaca, Cohomology theory for digital images, Rom. J. Inf. Sci. Tech. 16 (1) (2013), 10-28.
[14] O. Ege, I. Karaca, M. E. Ege, Relative homology groups in digital images, Appl. Math. Inf. Sci. 8 (5) (2014), 2337-2345.
[15] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211-221.
[16] M. Farber, Invitation to Topological Robotics, European Mathematical Society, 2008.
[17] J. Haarman, M. P. Murphy, C. S. Peters, P. C. Staecker, Homotopy equivalence in finite digital images, J. Math. Imaging Vis. 53 (2015), 288-302.
[18] G. T. Herman, Oriented surfaces in digital spaces, CVGIP-Graph Model Im. 55 (1993), 381-396.
[19] M. Is, I. Karaca, The higher topological complexity in digital images, Appl. Gen. Topol. 21 (2020), 305-325.
[20] I. Karaca, M. Is, Digital topological complexity numbers, Turk. J. Math. 42 (6) 2018, 3173-3181.
[21] E. Khalimsky, Motion, Deformation, and Homotopy in Finite Spaces, Proceedings IEEE International Conference on Systems, Man and Cybernetics, 1987.
[22] T. Y. Kong, A digital fundamental group, Comput. Graph. 13 (1989), 159-166.
[23] D. G. Morgenthaler, A. Rosenfeld, Surfaces in three-dimensional images, Inf. Control. 51 (1981), 227-247.
[24] A. Rosenfeld, Connectivity in digital pictures, J. ACM. 17 (1970), 146-160.
[25] A. Rosenfeld, Digital topology, Am. Math. Mon. 86 (1979), 76-87.
[26] Y. Rudyak, On higher analogs of topological complexity, Topol. Appl. 157 (5) (2010), 916-920.