ارزیابی نقش اسپیرولینا پلاتنسیس برکاهش جذب کادمیم در موش هایC57
الموضوعات :علی شریف زاده 1 , سعید نظارتی زاده 2
1 - گروه آموزشی میکروبیولوژی،دانشکده دامپزشکی، واحد شهرکرد، دانشگاه آزاد اسلامی،شهرکرد، ایران
2 - دانشکده دامپزشکی، واحد شهرکرد، دانشگاه آزاد اسلامی،شهرکرد، ایران
الکلمات المفتاحية: اسپیرولینا, تجمع کادمیم, اسپکترفوتومتری جذب اتمی,
ملخص المقالة :
کادمیم یکی از مهمترین فلزات سنگین خاک است که گذشته از اهمیت زیست محیطی می تواند عوارض متعددی را برای سلامتی انسان ودام ایجاد کند. هدف از این مطالعه بررسی تاثیر سیانوباکتر اسپیرولینا پلاتنسیس (آرتروسپیرا پلاتنسیس)بر کاهش تجمع کادمیوم در بافت های کبد و کلیه موش های C57 می باشد. در این بررسی تعداد16 سر موش C57 به طور تصادفی در 4 گروه شاهد و تیمار تقسیم شدند . گروه شاهد با سرم فیزیولوژی و گروه ها ی تیمار با 1000 میکروگرم در میلی لیتر کلرید کادمیم ، یک درصد اسپیرولینا و مخلوط مساوی اسپیرولینا و کادمیم مواجه گردیدند. موش ها در روز 24 پس از بی هوشی با اتر کشته شدند و میزان کادمیوم در مدفوع، کبد و کلیه با روش اسپکترفوتومتری جذب اتمی اندازه گیری گردید. نتایج نشان داد که سیانوباکتر اسپیرولینا پلاتنسیس موجب افزایش دفع کادمیوم از طریق مدفوع و کاهش تجمع این فلز سنگین درکبد و کلیه موش های C57 می گردد. از این رو به نظر می رسد که استفاده از این باکتری به عنوان مکمل غذایی به دلیل دارا بودن پروتین بالا و اثر قابل توجه در کاهش جذب گوارشی کادمیوم می تواند در ارتقای بهره وری موثر باشد.
the vicinity of asphalt plants in delta state, Nigeria. Environmental Forensics 14: 248-259.
2. Lu, A., hang, Sh., Shan, X. Q., 2005. Time effect on the fractionation of heavy metals in soils.
Geoderma 125: 225-234.
3. Wu, Ch., Yan, Sh., hang, ., Luo, Y., 2015. Chemical forms of cadmium in a calcareous soil
treated with different levels of phosphorus-containing acidifying agents. Soil Research 53:
105-111.
4. Malakouti, M.J .2011. Relationship between Balanced Fertilization and ealthy Agricultural
Products (A Review) Journal of Crop and Weed Ecophysiology / Vol. 4, No. 4(16): 11-20.
5. Nwokocha, C.R., Owu, D.U., Nwokocha, M.I., Ufearo, C.S. and Iwuala, M.O.E. 2012.
Comparative study on the efficacy of lliu sativu (garlic) in reducing some heavy metal
accumulation in liver of wistar rats. Food Chemistry and Toxicology, 50: 222–6.
6. alttunen, T., Salminen, S. and Tahvonen, R. 2007. Rapid removal of lead and cadmium from
water by specific lactic acid bacteria. International Journal of Food Microbiology, 114: 30–51.
7. Malago, J.J. and oninkx, J.F.J.G. 2011. Probiotic Bacteria and Enteric Infections. Springer.
9–11.
8. Turroni, F., Foroni, E., Pizzetti, P., Giubellini, V., Ribbera, A., Merusi, P., 2009. Exploring the
diversity of the bifidobacterial population in the human intestinal tract. Appllied and
Environmental Microbiology, 75: 1534–1545.
9. Monachese, M., Burton, J.P. and Reid, G. 2012. Bioremediation and tolerance of humans to
heavy metals through microbial processes: a potential role for probiotics? Appllied and
Environmental Microbiology, 78: 6397–404.
10. Jafari, N., Ahmadi asbchin, S., 2013. Adsorption of cadmium and lead ions from aqueous
solution by brown algae Cystoseira indica. Journal of plant researches (Iranian journal of
biology) 27(1): 23-31. (in persian).
11. Choonawala B. 2007. Spirulina production in Brine Effluent from Cooling Towers, Durban
University of Technology
12. Al- omaidan, A. A., Al- ouri, . J., Al- azzani, A. A., Elgaaly, G., Moubayed, N. M.S.,
2014. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass.
Arabian Journal of Chemistry 7: 57-62.
13. Rangsayatorn, N., E. S. Upatham, M. ruatrachue, P. Pokethitiyook and G. R. Lanza. 2002.
Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies
of cadmium. Environmental Pollution 119 : 45–53
14. elekli, A., Bozkurt, ., 2011. Bio-sorption of cadmium and nickel ions using Spirulina
platensis: inetic and equilibrium studies. Desalination 275: 141-147.
15. Al- omaidan, A. A., Alabdullatif, J. A., Al- azzani, A. A., Al-Ghanayem, A. A., Alabbad, A.
F., 2015. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi
Journal of Biological Sciences 22: 1-6.
16. wak , . W., im, M. ., Lee, J. Y., Yun, ., im, M. ., Park, Y. ., Lee, . ., 2015.
Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for
chromium (VI) removal. Algal Research 7: 92-99.
17. Chojnacka ., Chojnacki A. and Górecka .,2005.Biosorption of Cr3+, Cd2+ and Cu2+ ions
by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process,
Chemosphere 59(1): 75-84.
18. Murugesan, A. G., Maheswari, S., Bagirath, G., 2008. Biosorption of cadmium by live and
immobilized cells of Spirulina latensis. International Journal Environment Research 2(3):
307-312.
19. are L., Safarzadeh S., arami S. 2018. Effect of Spirulina green algae and incubation time
on cadmium chemical forms in a calcareous soil . Journal of Natural Environment 70(3):
643-657
_||_
the vicinity of asphalt plants in delta state, Nigeria. Environmental Forensics 14: 248-259.
2. Lu, A., hang, Sh., Shan, X. Q., 2005. Time effect on the fractionation of heavy metals in soils.
Geoderma 125: 225-234.
3. Wu, Ch., Yan, Sh., hang, ., Luo, Y., 2015. Chemical forms of cadmium in a calcareous soil
treated with different levels of phosphorus-containing acidifying agents. Soil Research 53:
105-111.
4. Malakouti, M.J .2011. Relationship between Balanced Fertilization and ealthy Agricultural
Products (A Review) Journal of Crop and Weed Ecophysiology / Vol. 4, No. 4(16): 11-20.
5. Nwokocha, C.R., Owu, D.U., Nwokocha, M.I., Ufearo, C.S. and Iwuala, M.O.E. 2012.
Comparative study on the efficacy of lliu sativu (garlic) in reducing some heavy metal
accumulation in liver of wistar rats. Food Chemistry and Toxicology, 50: 222–6.
6. alttunen, T., Salminen, S. and Tahvonen, R. 2007. Rapid removal of lead and cadmium from
water by specific lactic acid bacteria. International Journal of Food Microbiology, 114: 30–51.
7. Malago, J.J. and oninkx, J.F.J.G. 2011. Probiotic Bacteria and Enteric Infections. Springer.
9–11.
8. Turroni, F., Foroni, E., Pizzetti, P., Giubellini, V., Ribbera, A., Merusi, P., 2009. Exploring the
diversity of the bifidobacterial population in the human intestinal tract. Appllied and
Environmental Microbiology, 75: 1534–1545.
9. Monachese, M., Burton, J.P. and Reid, G. 2012. Bioremediation and tolerance of humans to
heavy metals through microbial processes: a potential role for probiotics? Appllied and
Environmental Microbiology, 78: 6397–404.
10. Jafari, N., Ahmadi asbchin, S., 2013. Adsorption of cadmium and lead ions from aqueous
solution by brown algae Cystoseira indica. Journal of plant researches (Iranian journal of
biology) 27(1): 23-31. (in persian).
11. Choonawala B. 2007. Spirulina production in Brine Effluent from Cooling Towers, Durban
University of Technology
12. Al- omaidan, A. A., Al- ouri, . J., Al- azzani, A. A., Elgaaly, G., Moubayed, N. M.S.,
2014. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass.
Arabian Journal of Chemistry 7: 57-62.
13. Rangsayatorn, N., E. S. Upatham, M. ruatrachue, P. Pokethitiyook and G. R. Lanza. 2002.
Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies
of cadmium. Environmental Pollution 119 : 45–53
14. elekli, A., Bozkurt, ., 2011. Bio-sorption of cadmium and nickel ions using Spirulina
platensis: inetic and equilibrium studies. Desalination 275: 141-147.
15. Al- omaidan, A. A., Alabdullatif, J. A., Al- azzani, A. A., Al-Ghanayem, A. A., Alabbad, A.
F., 2015. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi
Journal of Biological Sciences 22: 1-6.
16. wak , . W., im, M. ., Lee, J. Y., Yun, ., im, M. ., Park, Y. ., Lee, . ., 2015.
Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for
chromium (VI) removal. Algal Research 7: 92-99.
17. Chojnacka ., Chojnacki A. and Górecka .,2005.Biosorption of Cr3+, Cd2+ and Cu2+ ions
by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process,
Chemosphere 59(1): 75-84.
18. Murugesan, A. G., Maheswari, S., Bagirath, G., 2008. Biosorption of cadmium by live and
immobilized cells of Spirulina latensis. International Journal Environment Research 2(3):
307-312.
19. are L., Safarzadeh S., arami S. 2018. Effect of Spirulina green algae and incubation time
on cadmium chemical forms in a calcareous soil . Journal of Natural Environment 70(3):
643-657