مطالعه مکانیسم دفاعی ریزجلبک Haematococcus pluvialis طی آلودگی به قارچ Paraphysoderma sedebokerensis
الموضوعات :بهاره ناهیدیان 1 , فائزه قناتی 2 , مریم شهبازی 3 , ندا سلطانی 4 , مرتضی غلامی 5
1 - دانشجوی دکتری فیزیولوژی گیاهی- گروه علوم گیاهی-دانشگاه تربیت مدرس
2 - گروه علوم گیاهی-دانشکده علوم زیستی- دانشگاه تربیت مدرس
3 - استادیار گروه فیزیولوژی مولکولی، پژوهشکده بیوتکنولوژی کشاورزی ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران
4 - گروه میکروبیولوژی نفت، پژوهشکده علوم پایه کاربردی جهاد دانشگاهی، تهران، ایران
5 - گروه شیمی، دانشکده علوم پایه، دانشگاه گلستان، گلستان، ایران
الکلمات المفتاحية: فعالیت آنتیاکسیدانی, هیدروژن پراکسید, آمینواسیدهای آزاد درون سلولی, ریزجلبک Haematococcus pluvialis, قارچ کیترید,
ملخص المقالة :
پاسخ اولیه سلولی ریزجلبک Haematococcus pluvialis طی آلودگی به قارچ کیترید در این پژوهش مطالعه شد. برای این منظور، شکل پالملوئید ریزجلبک H. pluvialis در سه محیط آلوده به قارچ کیترید، محیط بازیافتی ریزجلبکهای سالم و محیط بازیافتی ریز جلبک آلوده به قارچ کیترید برای دو روز کشت شد و سپس فعالیت آنزیمهای آنتی اکسیدانی، غلظت پراکسید برون سلولی و آمینواسیدهای آزاد درون سلولی با فنون طیف سنجی UV/vis و HPLCسنجیده شد. بیشترین فعالیت آنزیمهای آنتی-اکسیدانی سوپراکسید دیسموتاز، کاتالاز و پراکسیداز در سلولهای آلوده به کیترید بهترتیب در ساعت های 24، 24 و 48 و به میزان 3/2، 7/6 و 6/2 برابر نمونه های شاهد بود. بیشترین فعالیت این آنزیم ها در سلولهای کشت شده با محیط بازیافتی سلولهای آلوده در 12، 12 و 36 ساعت بهترتیب 1/2، 5/2 و 6/2 برابر بیشتر از فعالیت این آنزیمها در نمونههای شاهد بود. همچنین میزان پراکسید برون سلولی در ریزجلبک کشت شده در محیط بازیافتی سلولهای آلوده حدود 4 برابر بیشتر از سایر نمونهها بود و این در حالی است که سطح پراکسید در سلولهای آلوده به کیترید با شیب ملایمی از 3/1 به 8/1 میکرومولار طی 48 ساعت کشت افزایش یافت. آمینواسیدهای هیستیدین، آلانین، آسپاراژین، آسپاراتیک اسید، آرژنین و متیونین با بیشترین افزایش و فنیل آلانین و تریپتوفان با بیشترین کاهش همراه بودند. نتایج نشان می دهد که ریزجلبک H. pluvialis از طریق فعال کردن مسیرهای آنتی اکسیداتیوآنزیمی و نیز برخی آمینواسید های ویژه به مقابله با کیتریدو افزایش سطح پراکسید سلولی ناشی از آلودگی می پردازد.
[1]. Arakawa, T., Timasheff, S. N. 1985, The stabilization of proteins by osmolytes . Biophysical Journal, 47(3): 411-414.
[2]. Biermann, M., Bardl, B., Volstadt, S., Linnemann, J., Knupfer, U., Seidel, G., Horn, U. 2013, Simultaneous analysis of the non-canonical amino acids norleucin and norvaline in biopharmaceutical-related fermentation processes by a new ultra-high performance liquid choromatography approach Amino Acids, 44(4): 1225-1231.
[3]. Boubakri, H., Wahab, M. A., Chong, J., Gertz, C., Gandoura, S., Mliki, A., Bertsch, C., Soustre-Gacougnolle, I. 2013, Methionine elicits H2O2 generation and defense gene expression in grapevine and reduces Plasmopara viticola infection. Journal of Plant Physiology, 170: 15611568.
[4]. Carney, L.T., Sorensen, K. 2015, Methods for treating a culture of Haematococcus pluvialis for contamination using hydrogen peroxide, U.P. Office, Editor, Heliae Development LIc: USA.
[5]. Fassett, R.G., Coombes, J. S. 2009, Astaxanthin, oxidative stress, inflamation, and cardiovascular disease Future Cardiology, 5: 333-342.
[6]. Guerin, M., Huntley, M. E., Olaizola, M. 2003, Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology, 21(5): 210-216.
[7]. Gutman, J., Zarka, A., Boussiba, S. 2011, Evidence for the involvement of surface carbohydrates in the recognition of Haematococcus pluvialis by the parasitic blastoclad paraphysoderma sedebokerensis Fungal Biology, 115(8): 803-811.
[8]. Gutman, J., Zarka, A., Boussiba, S. 2009, The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. European Journal of Phycology, 44(4): 509-514.
[9]. Han, D., Li, Y., Hu, Q. 2013, Astaxanthin in microalgae: Pathways, functions, and biotechnological implications. Algae, 28(2): 131-147.
[10]. Han, D., Wang, J ,.Sammerfeld, M., Hu, Q. 2012, Susceptibility and protective mechanism of motile and non motile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress. Journal of Phycology, 48: 693-705.
[11]. Hoffman, Y.A.C., Zarka, A., Gutman, J., James, T. Y., Boussiba, S. 2008, Isolation and characterization of a novel chytrid species (phylum blastocladiomycota), parasitic on the green alga Haematococcus. Mycology Research, 112: 70-81.
[12]. Jianguo, L., Xiaoli, Z., Yanhong, S., Wei, L. 2010, Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals. Chinese Journal of Oceanology and Limnology, 28(1): 1-9.
[13]. Kazan, K., Manners, J. M. 2009, Linking development to defense: auxin in plant– pathogen interactions. Cell press, 14(7): 373-382.
[14]. Kim, D.-Y., Vijayan, D., Praveenkumar, R., Han, J.-I., Lee, K., Park, J.-Y., Chang, W.-S ,.Lee, J.-S., Oh, Y.-K. 2016, Cellwall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresource Technology, 199: 300-310.
[15]. Kumar, K., Mishra, S. K., Shrivastav, A., Park, M. S., Yang, J.-W. 2015, Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, 51: 875-885
[16]. Olive, A.J., Sassetti, C. M. 2016, Metabolic crosstalk between host and pathogen: Sensing, adapting and competing. Nature Reviews: Microbiology, 14: 221-234.
[17]. Panis, G., Carreon, J. R. 2016, Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a technoeconomic assessment all through production line .Algal Research, 18: 175190.
[18]. Sadeghnezhad, E., Sharifi, M., Zare- Maivan, H. 2016, Profiling of acidic (amino and phenolic acids) and phenylpropanoids production in response to methyl jasmonate-induced oxidative stress in Scrophularia striata suspension cells. Planta, 244 (1): 75-82.
[19]. Sahebjamei, H., Abdolmaleki, P., Ghanati, F. 2007, Effects of magnetic field on the antioxidant enzymes activities of suspension cultured tobacco cells. Bioelectromagnetics, 28(1): 42-47.
[20]. Sharma, P., Jha, A. B., Dubey, R. S., Pessarakli, M. 2012, Reactive oxygen species, oxidative damage, and antioxidative defence mechanism in plant under stressful conditions. Journal of Botany, 2012: 1-27.
[21]. Takayama, M., Ezura, H. 2015, How and why does tomato accumulate a large amount of GABA in the fruit? Frontiers in Plant Science, 6: 1-7
[22]. Udenigwe, C.C., Aluko, R. E. 2011, Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. International Journal of Molecular Sciences, 12: 3148-316
[23]. Xi, T., Kim, D. G., Roh, S. W., Choi, J.-S., Choi, Y.-E. 2016, Enhancement of astaxanthin production using Haematococcus pluvilais with novel LED wavelength shift strategy. Applied Microbiology and Biotechnology, 100: 6231-6238.
[24]. Zeier, J. 2013, New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell, and Environment, 36: 2085-2103.
_||_