Efficient Harvesting of Saffron Using Integer Programming
الموضوعات :سیامک خیبری 1 , امیر بکاییان 2 , سید علی ناجی نصرآبادی یزد 3
1 - گروه مدیریت- تحقیق در عملیات، دانشگاه فردوسی مشهد، مشهد، ایران
2 - گروه ریاضیات کاربردی، دانشگاه فردوسی مشهد، مشهد، ایران
3 - گروه مدیریت- تحقیق در عملیات، دانشگاه فردوسی مشهد، مشهد، ایران
الکلمات المفتاحية: Integer programming, Saffron harvest, Workforce planning,
ملخص المقالة :
Among various products available in agriculture, saffron plays a major role in contributing to Iran's gross domestic product and per capita income growth. Due to shortage of workforce and short duration of harvesting, areas under cultivation of saffron in Iran will be declining in coming years. Thus, proper planning for optimum use of workforce is one of the most important techniques to access efficient harvesting. In this regard, an integer programming model is proposed to solve the problem in this paper. Number of working shift and working hours in each shift are among decision variables in the proposed model, which satisfy the objective function, i.e. minimizing the total cost of workforce, with constrains including number of working hours in each shift, speed of workforce, number of fields that should be harvested in each day and relationship between working hours of each worker and the cost allocated . To evaluate the proposed model, we employ the data collected from fields located in different areas of Qaen, South Khorasan province, Iran. By comparing the output of the proposed model to the real situation, the ability of the model is confirmed. Finally, concluding remarks and suggestions for future research are provided.
Carmona, M., Zalacain, A., Salinas, M. R., & Alonso, G. L. (2007). A new approach to saffron aroma. Critical Reviews in Food Science and Nutrition, 47(2), 145-159.
Castillo, I., Joro, T., & Li, Y. Y. (2009). Workforce scheduling with multiple objectives. European Journal of Operational Research, 196(1), 162-170.
Dewi, D. S., & Septiana, T. (2015). Workforce scheduling considering physical and mental workload: A case study of domestic freight forwarding. Procedia Manufacturing, 4, 445-453.
Goel, A., & Meisel, F. (2013). Workforce routing and scheduling for electricity network maintenance with downtime minimization. European Journal of Operational Research, 231(1), 210-228.
Gohari, A. R., Saeidnia, S., & Mahmoodabadi, M. K. (2013). An overview on saffron, phytochemicals, and medicinal properties. Pharmacognosy Reviews, 7(13), 61.
Hytonen, J., Niemi, E., & Toivonen, V. (2008). Optimal workforce allocation for assembly lines for highly customised low-volume products. International Journal of Services Operations and Informatics, 3(1), 28-39.
Jafari, H., Bateni, S., Daneshvar, P., Bateni, S., & Mahdioun, H. (2016). Fuzzy mathematical modeling approach for the nurse scheduling problem: A case study. International Journal of Fuzzy Systems, 18(2), 320-332.
Jafari, H., & Salmasi, N. (2015). Maximizing the nurses’ preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithm. Journal of Industrial Engineering International, 11(3), 439-458.
Jalali-Heravi, M., Parastar, H., & Ebrahimi-Najafabadi, H. (2009). Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis. Journal of Chromatography A, 1216(33), 6088-6097.
Jennings, M. G., & Shah, N. (2014). Workforce planning and technology installation optimization for utilities. Computers & Industrial Engineering, 67, 72-81.
Kheybari, S., & Salehpour, R. (2015). The optimization of the paddy field irrigation scheduling using mathematical programming. Water Science and Technology: Water Supply, 15(5), 1048-1060.
Li, J., Burke, E. K., Curtois, T., Petrovic, S., & Qu, R. (2012). The falling tide algorithm: a new multi-objective approach for complex workforce scheduling. Omega, 40(3), 283-293.
Maggi, L., Carmona, M., Del Campo, C. P., Kanakis, C. D., Anastasaki, E., Tarantilis, P. A., & Alonso, G. L. (2009). Worldwide market screening of saffron volatile composition. Journal of the Science of Food and Agriculture, 89(11), 1950-1954.
Melfou, K., Loizou, E., Oxouzi, E., & Papanagiotou, E. (2015). Economic Performance of Quality Labeled Saffron in Greece. Procedia Economics and Finance, 24, 419-425.
Nah, J. E., & Kim, S. (2013). Workforce planning and deployment for a hospital reservation call center with abandonment cost and multiple tasks. Computers & Industrial Engineering, 65(2), 297-309.
Norouzi, N., Tavakkoli-Moghaddam, R., Ghazanfari, M., Alinaghian, M., & Salamatbakhsh, A. (2012). A new multi-objective competitive open vehicle routing problem solved by particle swarm optimization. Networks and Spatial Economics, 12(4), 609-633.
Othman, M., Bhuiyan, N., & Gouw, G. J. (2012). Integrating workers’ differences into workforce planning. Computers & Industrial Engineering, 63(4), 1096-1106.
Özgüven, C., & Sungur, B. (2013). Integer programming models for hierarchical workforce scheduling problems including excess off-days and idle labour times. Applied Mathematical Modelling, 37(22), 9117-9131.
Rajabi, Z., Behyar, M. B., Ghayoor, H. A., Ezatian, V., & Gandomkar, A. (2015). Estimation saffron evapotranspiration by Penman Monteith method and its Water require in Isfahan province. Geographical Researches Journal, 30(1), 239-252.
Silva, T. A., de Souza, M. C., Saldanha, R. R., & Burke, E. K. (2015). Surgical scheduling with simultaneous employment of specialized human resources. European Journal of Operational Research, 245(3), 719-730.
Valls, V., Pérez, Á, & Quintanilla, S. (2009). Skilled workforce scheduling in service centres. European Journal of Operational Research, 193(3), 791-804.
Wahyudin, R. S., Sutopo, W., Hisjam, M., & Hardiono, R. S. (2016). Resource allocation model to find optimal allocation of workforce, material, and tools in an aircraft line maintenance. International Multi-Conference of Engineers and Computer Scientists.16-18, Hong Kong