فیزیولوژی تنش شوری در گندم: مقاله مروری
الموضوعات :
1 - گروه تولید و ژنتیک گیاهی، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر ، ایران
الکلمات المفتاحية: تحمل به تنش, شوری, آنزیمها, تنش یونی,
ملخص المقالة :
تنش شوری یکی از تنشهای مهم اثرگذار بر جوانهزنی، رشد، تولید و ویژگیهای کیفی گندم به شمار میرود. محققان تنش شوری را تجمع یونهایی نظیر سدیم، سولفات و کلر در محیط ریزوسفر بیان نمودهاند به نحوی که موجب اختلال در رشد طبیعی گیاه شود. تنش شوری از طریق کاهش فشار آماس سلول، ممانعت از انجام وظایف غشاءها، اثر بر فعالیت آنزیمها، ممانعت از فتوسنتز و القای کمبود یون در اثر کاهش انتقال یونها و دیگر فرآیندهای فیزیولوژیکی موجب کاهش رشد، شاخص سطح برگ، زیست توده و عملکرد دانه در گندم میشود. ارقام گندم واکنشهای متفاوت به شوری خاک و آب نشان میدهند و میزان تمحل ارقام گندم به شوری با برخی ویژگیهای فزیولوژیکی مرتبط است. افزایش تحمل به شوری در ارقام گندم نان با کاهش غلظت سدیم در گیاه و همچنین کاهش نسبت عنصر سدیم به پتاسیم در برگها مرتبط است. جداسازی سدیم در برگها و ترجیحا" پتاسیم، به وجود ژنومD در گندمهای هگزاپلوئید مربوط میشود. بطورکلی، آگاهی از واکنشهای فیزیولوژیکی به ویژه در ژنوتیپهای متحمل به شوری یاریگر اصلاح گران نبات برای تولید ژنوتیپهای متحمل به شوری است. این تحقیق به مطالعه اثر تنش شوری بر برخی ویژگیهای فیزیولوژیکی و رشد و نمو گندم پرداخته است.
نابع
1-حیدری، م.، م، بخشنده.، ح، نادیان.، و ق، فتحی. 1385 .تاثیر سطوح مختلف شوری و نیتروژن بر عملکرد
دانه، تنظیم کنندههای اسمزی و جذب سدیم و پتاسیم در گندم رقم چمران. مجله علوم کشاورزی ایران- کرج. جلد
.51-40 صفحات. 2 شماره. 37
2 -محمدی، م، و ق. فتحی. 1382 .مقایسه گزینشی ژنوتیپهای متحمل و پر محصول جو در شرایط مساعد و نا
مساعد محیطی. مجله علمی کشاورزی اهواز. شماره 2 .14 -27.
3 -مدحج، ع و کربالیی، ا. 1398 .واکنش جوانهزنی بذر و رشد گیاهچه ژنوتیپهای گندم Triticum(
(.L durum and aestivum به تنش شوری در رژیمهای مختلف دمایی. مجله تنشهای محیطی در علوم زراعی.
.262-251 :)1( 12
0
4-Acevedo, E., H. Silva., & P. Silva. 1998. Tendencias actuales de la investigación de la
resistencia al estrés hídrico de las plantas cultivadas. Bol. Técn. Esta. Exp. Agron., 49(1-
2): 1-28.
5-Ahmad, M., Wang, X., Hilger, T.H., Luqman, M., Nazli,F., Hussain, A., Zahir,
Z.A., Latif, M., Saeed, Q., Malik, H.A. 2020. Evaluating Biochar-Microbe Synergies for
Improved Growth, Yield of Maize, and Post-Harvest Soil Characteristics in a Semi-Arid
Climate. Agronomy, 10: 1055.
6-Afzal, I., Rauf, S., Basra, S. M. A., Murtaza, G. 2008. Halopriming improves vigor,
metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil
Environment, 54: 382–388.
7-Ashraf, M., and J. W. O’Leary. 1996. Responses of some newly developed salt-
tolerant genotypes of spring wheat to salt stress. II. Water relation and photosynthetic
capacity. Acta Bot. Neerl, 45: 29-39.
8-Bidinger, F. R., V. Mahalakshmi., and G. D. Rao. 1987. Assessment of drought
resistance in Pearl Millet (Pennisetum americanum L. Leeke). I. Factors affecting yields
under stress. Austr. J. Agric. Res., 38: 37-48.
9. Bose, J., Rodrigo-Moreno, A., Shabala, S. 2014. ROS homeostasis in halophytes in
the context of salinity stress tolerance. Journal of Experimental Botany, 65: 1241–1257.
10-Chhipa, B. R., & P. Lal. 1995. Na/K ratios as the basis of salt tolerance in wheat.
Austr. J. Agric. Res, 46: 533-539.
11-Ding, Z., Kheir, A. S., Ali, O. A., Hafez, E., Elshamey, E. A. 2021. A vermicompost
and deep tillage system to improve saline-sodic soil quality and wheat productivity.
Journal of Environmental Management,277: 111–388.
12-Esfandiari, E., Enayati, V., Abbasi, A., 2011. Biochemical and physiological changes
in response to salinity in two durum wheat (Triticum turgidum L.) genotypes. Not Bot
Hort Agrobot Cluj, 39(1):165-170.
13- Foyer, C. H., Noctor, G. 2003. Redox sensing and signalling associated with reactive
oxygen in chloroplasts, peroxisomes and mitochondria. Physiology of Plants, 119: 355–
364.
14-Francois, L. E., E. V. Maas., T. J. Donovan., & V. L. Youngs. 1986. Effect of
salinity on grain yield and quality, vegetative growth, and germination of semi-dwarf and
durum wheat. Agron. J, 78: 1053-1058.
15-Frank, A. B., A. Bauer., & A. L. Black. 1987. Effects of temperature and water stress
on apex development in wheat. Crop Sci, 27: 113-116.
16- Farooq, M., Hussain, M., Wakeel, A., Siddique, K. H. M. 2015. Salt stress in maize
effects resistance mechanisms and management: A review. Agronomy for Sustainable
Development, 35: 461–48.
17- Garg, N.,Manchanda, N. 2009. Role of arbuscular mycorrhizae in the alleviation of
ionic osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) millsp
(pigeonpea). Journal of Agronomy and Crop Science, 195: 110–123.
18-Grieve, C. M., L. E. Francois., & E. V. Maas. 1994. Salinity affects the timing of
phasic development in spring wheat. Crop Sci, 34: 1544-1549.
19-Grieve, J., S. Lesch., L. Francois., & E. Maas. 1992. Analysis of main spike yield
components in salt-stressed wheat. Crop Sci, 32: 697-703.
20-Guo, R., Yang, Z., Li, F., Yan, C., Zhong, X. 2015. Comparative metabolic responses
and adaptive strategies of wheat (Triticum aestivum L.) to salt and alkali stress. BMC Plant
Biology, 15, 170.
21- Gurmani, A. R., Bano, A., Najeeb, U., Zhang, J., Khan, S. U. 2013. Exogenously
applied silicate and abscisic acid ameliorates the growth of salinity stressed wheat
(Triticum aestivum L.) seedlings through Na+ exclusion. Australian Journal of Crop
Science, 7: 1123–1130.
22- Hasegawa, P. M., Bressan, R. A., Zhu, J. K., Bohnert, H. J. 2000. Plant cellular and
molecular responses to high salinity. Annual Review of Plant Biology, 51: 463–499.
23- Hasanuzzaman, M., Nahar, K., Fujita, M. 2013. Plant response to salt stress and
role of exogenous rotectants to mitigate salt-induced damages. Ecophysiology and
responses of plants under salt stress. pp. 25–87. Nework,
NY, USA: Springer.
24-Hasanuzzaman, M., Nahar, K., Fujita, M., Ahmad, P., Chandna, R. 2013.
Enhancing plant productivity under salt stress: Relevance of poly-omics. In Ahmad P,
Azooz M. M., Prasad, M. N. V. (eds), Salt Stress in Plants: Omics, Signaling and
Responses, pp. 113–156. Berlin, Germany: Springer.
25- Hasanuzzaman, M., Hossain, M. A., Fujita, M. 2011. Nitric oxide modulates
antioxidant defense and the methylglyoxal detoxification system and reduces salinity-
induced damage of wheat seedlings. Plant Biotechnological Reports, 5, 353–365.
26-Hasanuzzaman, M., Nahar, K., Fujita, M. 2013. Plant response to salt stress and role
of exogenous protectants to mitigate salt-induced damages. Ecophysiology and responses
of plants under salt stress. pp. 25–87. New York, NY, USA
27- Iqbal, M., Ashraf, M. 2007. Seed treatment with auxins modulates growth and ion
partitioning in salt-stressed wheat plants. Journal of Integrative Plant Biology, 49: 1003–
1015.
28- Iqbal, M., Ashraf, M. 2005. Pre-sowing seed treatment with cytokinins and its effect
on growth, hotosynthetic rate, ionic levels and yield of two wheat cultivars differing in salt
tolerance. Journal of Integrative Plant Biology,
47: 1315–1325.
29-Katerji, N., J. W. van Hoorn, C. Fares, A. Hamdy, M. Mastrorilli., and T. Oweis.
2005. Salinity effect on grain quality of two durum wheat varieties differing in salt
tolerance. Agricultural Water Management, 75 (2): 85-91.
30-Li, W. Y. F., Wong, F. L., Tsai, S. N., Phang, T. H., Shao, G. 2006. Tonoplast
located GmCLC1 andGmNHX1 from soybean enhance NaCl tolerance in transgenic
bright yellow (by)-2 cells. Plant Cell Environment, 29: 1122–1137.
31-Munns, R., James, R. A., and La¨ uchli, A., 2006. Approaches to increasing the salt
tolerance of wheat and other cereals. Journal of Experimental Botany, 57 (5): 1025–1043.
32- Neubert, A. B., Zorb, C. Schubert, S. 2005. Expression of vacuolar Na+/H+
antiporters (ZmNHX) and Na+ exclusion in roots of maize (Zea Mays L.) genotypes with
improved salt resistance. In Li C. J. et al. (Eds), Plant nutrition for food security human
health and environmental protection, pp. 63–89. Beijing, China:Tsinghua University Press.
33- Parida, A. K., Das, A. B. 2005. Salt tolerance and salinity effect on plants: A review.
Ecotoxicology and Environmental Safety, 60: 324–349.
1400
34-Pottosin, I., Velarde-Buendía, A. M., Bose, J., Zepeda-Jazo, I., Shabala, S.2014.
Cross-talk between reactive oxygen species and polyamines in regulation of ion transport
across the plasma membrane: Phyton, 2022, vol.91, no.4 683 Implications for plant
adaptive responses. Journal of Experimental Botany, 65: 1271–1283.
35-Schachtman, D., R. Munns., and M. Whitecross. 1991. Variation and sodium
exclusion and salt tolerance in Triticum tauschii. Crop Sci, 31: 992-997.
36-Shaddad, M. A. K., Abd El-Samad, H. M., Mostafa, D. 2013. Role of gibberellic
acid (GA3) in improving salt stress tolerance of two wheat cultivars. International Journal
Plant Physiology and Biochemistry, 5: 50–57.
37-Shannon, M. C. 1997. Adaptation of plants to salinity. Adv. Agron, 60: 75-120.
38-Shah, S., J. Gorham., B. Forster., & R. Wyn Jones. 1987. Salt tolerance in the
Triticeae: the attribute of the D genome to cation selectivity in hexaploid wheat. J. Exp.
Bot., 38: 254-269.
39- Sreenivasulu, N., Grimm, B., Wobus, U., Weschke, W. 2000. Differential response
of antioxidant omponents to salinity stress in salt-tolerant and salt sensitive seedlings of
foxtail millet (Setaria italica). Physiology of Plants, 109: 435–442.
40-Wakeel, A., Farooq, M., Qadir, M., Schubert, S. 2011. Potassium substitution by
sodium in plants. Critical Review in Plant Science, 30: 401–413.
41- Willekens, H., Inze, D., Van Montagu, M., van Camp, W. 1995. Catalases in plants.
Molecular Breeding,1: 207–228.
42-Zou, P., Li, K., Liu, S., He, X., Zhang, X. 2016. Effect of sulfated
chitooligosaccharides on wheat seedlings (Triticum aestivum L.) under salt stress. Journal
of Agriculture and Food Chemistry, 64: 2815–2821.
_||_