Some Parts of the Feather Can be a Non-Invasive Genetic Sample for Sexing in Avian?
الموضوعات :N . Yimtragool 1 , P. Changtor 2
1 - Department of Biology, Faculty of Science, Naresuan University, Phitsanulok
2 - Department of Biology, Faculty of Science, Naresuan University, Phitsanulok
الکلمات المفتاحية: PCR, bird, feather, sex identification,
ملخص المقالة :
The current animal research investigation emphasizes animal wellbeing. Therefore, the present study recommends using non-invasive sampling procedures in scientific studies. The purpose of this study was to evaluate DNA extracted from 7 different parts of the feather (calamus tip, rachis (I-III) and barbs (I-III)) for sex identification using polymerase chain reaction (PCR) amplification. The study results showed that the calamus tip had the highest DNA concentration. DNA extracted from rachis and barbs can also be amplified and use for sex determination. Extracted DNA from the calamus tip, rachis (I), and barbs (I) showed accurate results for amplified PCR products when compared to the sex of known samples. The findings revealed that, in addition to the calamus tip, the rachis and barbs on the lower part of the feather surrounding on the calamus can be used to determine sex. Calamus tip collection by plucking is an invasive technique that could result in contusion and infection. The non-invasive sample collection method of cutting a portion of the feather is one option for supporting animal welfare guidelines. Furthermore, the non-invasive method presented in the study can be used to collect samples in other branches of molecular biology.
Andleeb D.S., Shamim S., Awan M.N. and Minhas R.A. (2012). Modified protocol for genomic DNA extraction from newly plucked feathers of (Lophura leucomelana hamiltoni) (Galliformes) for genetic studies and its endo-restriction analysis. Pkistan J. Sci. Res. 55(2), 108-113.
Anten-Houston M.V., Ruta M. and Deeming D.C. (2017). Effects of phylogeny and locomotor style on the allometry of body mass and pelvic dimensions in birds. J. Anat. 231(3), 342-358.
Avanus K. and Koenhemsi L. (2018). Investigating the usage of molted feather samples as a DNA source with two methods in gender identification of African Grey Parrot (Psittacus erithacus) by molecular analyses of CHDW and CHDZ genes. Kocatepe Vet. J. 11, 40-44.
Bayard de Volo S., Reynolds R., Douglas M. and Antolin M. (2008). An improved extraction method to increase DNA yield from molted feathers. Condor. 110, 762-766.
Begovic L., Mihic I., Pospihalj T., Mikuska T., Mlina R. and Mikuska A. (2017). Evaluation of methods for molecular sex-typing of three heron species from different DNA sources. Turk J. Zool. 41, 593-598.
Bello N., Francino O. and Sánchez A. (2001). Isolation of genomic DNA from feathers. J. Vet. Diagn. Invest. 13(2), 162-164.
Boersma P. and Davies E. (1987). Sexing monomorphic birds by vent measurements. Auk. 104, 779-783.
Boonseub S., Johnston G. and Linacre A. (2012). Identification of protected avian species using a single feather barb. J. Forest Sci. 57, 1574-1577.
Bush K.L., Vinsky M.D., Aldridge C.L. and Paszkowski C.A. (2005). A comparison of sample types varying in invasiveness for use in DNA sex determination in an endangered population of greater Sage-Grouse (Centrocercus uropihasianus). Conserv. Genet. 6(5), 867-870.
Çakmak E., Akın Pekşen Ç. and Bilgin C. (2017). Comparison of three different primer sets for sexing birds. J. Vet. Diagn. Invest. 29, 59-63.
Campos P. and Gilbert T. (2011). DNA extraction from keratin and chitin. Ancient DNA. 840, 43-49.
Changtor P. and Yimtragool N. (2020). Comparison of DNA extraction methods and selection of primer sets for sex identification of the red-whiskered Bulbul (Pycnonotus jocosus). Int. J. Poult. Sci. 19, 244-251.
Clark P. (2015). Assessment of avian erythrocytes that exhibit variant nuclear morphology. Clin. Pathol. 24, 485-490.
Fridolfsson A. and Ellegren H. (1999). A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 30, 116-121.
Griffiths R. and Korn R.M. (1997). A CHD1 gene is Z chromosome linked in the chicken Gallus domesticus. Gene. 197, 225-229.
Harvey M., Bonter D., Stenzler L. and Lovette I. (2006). A comparison of plucked feathers versus blood samples as DNA sources for molecular sexing. J. Field Ornithol. 77, 136-140.
Idaghdour Y., Broderick D. and Korrida A. (2003). Faeces as a source of DNA for molecular studies in a threatened population of great Bustards. Conserv. Genet. 4, 789-792.
Jensen T., Pernasetti F.M. and Durrant B. (2003). Conditions for rapid sex determination in 47 avian species by PCR of genomic DNA from blood, shell-membrane blood vessels, and feathers. Zoo Biol. 22(6), 561-571.
Khumput S., Muangchum S., Yodprom S., Panyasak A. and Panyasak A. (2019). Feather pecking of laying hens in different stocking density and type of cage. Iranian J. Appl. Anim. Sci. 9(3), 549-556.
Kilatsih R., Perdamaian A.B.I., Joko T., Purwanto S.H. and Daryono B.S. (2020). Effect analysis of prolactin (PRL) gene polymorphisms on chicken egg productivity (Gallus gallus domesticus) BC1 from crossbreeding between Pelung and layer chicken. Iranian J. Appl. Anim. Sci. 10(4), 717-726.
Kocijan I., Dolenec P., Sinko T., Nenadic D.D., Pavokovic G. and Dolenec Z. (2011). Sex-typing bird species with little or no sexual dimorphism: an evaluation of molecular and morphological sexing. J. Biol. Res. Thessalon. 15, 145-150.
Lumeij J. and Hommers C. (2008). Foraging ‘enrichment’ as treatment for Pterotillomania. Appl. Anim. Behav. 111, 85-94.
Marija S., Vucicevic M., Jasna B., Jevrosima S., Dimitrijevic V., Radmila R. and Stanimirovic Z. (2013). Molecular sex determination of 20 bird species protected in the republic of serbia. Acta Vet. 63, 45-51.
Miyaki C.Y., Griffiths R., Orr K., Nahum L.A., Pereira S.L. and Wajntal A. (1998). Sex identification of parrots, toucans, and curassows by PCR: Perspectives for wild and captive population studies. Zoo Biol. 17(5), 415-423.
Morinha F., Magalhães P., Ferro A., Guedes-Pinto H., Rodrigues R. and Bastos E. (2011). Advances in molecular sexing of birds: A high-resolution melting-curve analysis based on CHD1 gene applied to Coturnix spp. Ann. Zool. Fennici. 48(6), 371-375.
Nota Y. and Takenaka O. (1999). DNA extraction from urine and sex identification of birds. Mol. Ecol. 8(7), 1237-1238.
Ortega M., Foote D., Nees N., Erdmann J., Bangs C. and Rosenfeld C. (2017). Karyotype analysis and sex determination in Australian brush-turkeys (Alectura lathami). 12(9), e0185014.
Peters C., Nelson H., Rusk B. and Muir A. (2020). A novel method to optimize the utility of underused moulted plumulaceos feather samples for genetic analysis in bird conservation. Conserv. Genet. Resour. 12, 457-467.
Presti F., Meyer J., Antas P., Guedes N. and Miyaki C. (2013). Non-invasive genetic sampling for molecular sexing and microsatellite genotyping of hyacinth macaw (Anodorhynchus hyacinthinus). Genet. Mol. Biol. 36, 129-133.
Purwaningrum M., Nugroho H.A., Asvan M., Karyanti K., Alviyanto B., Kusuma R. and Haryanto A. (2019). Molecular techniques for sex identification of captive birds. Vet. World. 12(9), 1506-1513.
Quintana F., López G.C. and Somoza G. (2008). A Cheap and Quick Method for DNA-based sexing of birds. Waterbirds. 31(3), 485-488.
Richner H. (1989). Avian laparoscopy as a field technique for sexing birds and an assessment of its effects on wild birds. J. Field Ornithol. 60, 137-142.
Segelbacher G. and Steinbrück G. (2001). Bird faeces for sex identification and microsatellite analysis. Die Vogelwarte. 41, 139-142.
Speller C., Nicholas G. and Yang D. (2011). Feather barbs as a good source of mtDNA for bird species identification in forensic wildlife investigations. Invest. Genet. 2(1), 16-25.
Trimbos K., Broekman J., Kentie R., Musters C. and Snoo G.R. (2009). Using eggshell membranes as a DNA source for population genetic research. J. Ornithol. 150, 915-920.
Wellbrock A., Bauch C., Rozman J. and Witte K. (2012). Buccal swabs as a reliable source of DNA for sexing young and adult common Swifts (Apus apus). J. Ornithol. 153, 991-994.
Wilson M., Polanskey D., Butler J., Dizinno J., Replogle J. and Budowle B. (1995). Extraction, PCR amplification and sequencing of mitochondrial DNA from human hair shafts. BioTechniques. 18, 662-669.
Witte K. and Curio E. (1999). Sexes of a monomorphic species differ in preference for mates with a novel trait. Behav. Ecol. 10(1), 15-21.