Probiotics Improve Productive Performance and Carcass Ultrasonographic Quality of Steers under Grazing during Dry-Water Transition Season
الموضوعات :N.F. Neves 1 , C.A. Pedrini 2 , E.R. Oliveira 3 , O.F.C. Marques 4 , J.T. Silva 5 , R.A.S. Becker 6 , W.S. Gouvea 7 , A.R.M. Fernandes 8 , J.R. Gandra 9
1 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
2 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
3 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
4 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
5 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
6 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
7 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
8 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
9 - Instituto de Estudos em Desenvolvimento Agrário e Regional, Universidade Federal do Sul e Sudeste do Pará, Marabá-PA, Brazil
الکلمات المفتاحية: carcass quality, antibiotics free, clean production, ionophores,
ملخص المقالة :
The aim of this study was to evaluate the probiotic effect on productive performance and carcass ultrasonographic quality of cross-bred steers. Ninety-four cross-breed steers with initial BW of 208.53 ± 23.56 kg were used, and distributed in a completely randomized design composed of 2 nutritional treatments, monensin and probiotic. The animals were weighed every 30 days, evaluated for productive performance and submitted to ultrasound evaluation of the carcass at the end of the experiment to verify development of the longissimus muscle area (LMA), subcutaneous back fat thickness in the longissimus dorsimuscle. The daily weight gain was greater in the group that received probiotics. Feed intake did not differ between groups. The animals that received probiotics obtained LMA and back fat thickness greater than the treatment with monensin. It can be concluded that the probiotic used in this trial provides improvements in the productive performance, helps in the digestibility of the fiber and improves the evaluated carcass characteristics.
Almeida R.G., Nascimento Junior D., Euclides V.P.B., Macedo M.C.M., Fonseca D.M., Brâncio P.A. and Garcez Neto A.F. (2003). Availability, botanical composition and nutritional value of forage from intercropped pastures, under three stocking rates. Rev. Bras. Zootec. 32, 36-46.
AOAC. (2000). Official Methods of Analysis. 17th Ed. Association of Official Analytical Chemists, Arlington, Washington, DC., USA.
Baah J., Wang Y. and McAllister T.A. (2009). Impact of a mixed culture of Lactobacillus casei and L. lactis on in vitro ruminal fermentation and the growth of feedlot steers fed barley-based diets. J. Anim. Sci. 89, 263-271.
Chaucheyras-Durand F. (2012). Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet. Pp. 119-152 in Probiotic in Animals. E.C. Rigobelo, Ed. InTech, Rijeka, Croatia.
Duffield T.F., Merrill J.K. and Bagg R.N. (2012). Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. J. Anim. Sci. 90, 4583-4592.
Euclides V.P.B. (2007). Diferimento de pastos de braquiária cultivares Basilisk eMarandu, na região do Cerrado. Pesq. Agropec. Bras. 42, 273-280.
Frizzo L.S., Zbrun L.S., Soto L.P. and Signorini M.L. (2011). Effects of probiotics on growth performance in young calves: A meta-analysis of randomized controlled trials. Anim. Feed Sci. Technol. 169, 147-156.
Gomes R.C., Leme P.R., Silva S.L., Antunes M.T. and Guedes C. F. (2009). Carcass quality of feedlot finished steers fed yeast, monensin, and the association of both additives. Arq. Bras. Med. Vet. Zootec. 61, 648-654.
Guan H., Wittenberg K.M., Ominski K.H. and Krause D.O. (2006). Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 84, 1896-1906.
Hedrick H.B. (1983). Methods of estimating live animal and carcass composition. J. Anim. Sci. 57, 1316-1327.
Kelsey A.J. and Colpoy J.A. (2018). Effects of dietary probiotics on beef cattle performance and stress. J. Vet. Behav. 27, 8-14.
Krehbiel C.R., Rust S.R., Zhang G. and Gilliland S.E. (2003). Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 81, 120-132.
Kuss F., Molleta J.L., Paula M.C.M., Moura I.C.F., Andrade S.J.T. and Silva A.G.M. (2009). Desempenho e características da carcaça e da carne de novilhos nao-castrados alimentados com ou sem adição de monensina e/ou probiótico a dieta. Ciênc. Rural. 39, 1180-1186.
McCann J.C., Elolimy A.A. and Loor J.J. (2017). Rumen microbiome, probiotics, and fermentation additives. Vet. Clin. North Am. Food Anim. Pract. 33, 539-553.
Melchior E.A., Hales K.E. and Lindholm-Perry A.K. (2018). The effects of feeding monensin on rumen microbial communities and methanogenesis in bred heifers fed in a drylot. Livest. Sci. 212, 131-136.
Morais J.A.S. (2011). Aditivos. Pp. 565-599 in Nutrição de ruminantes. T.T. Berchielli, A.V. Pirez and S.G. Oliveira, Eds. Editora Funep, Jaboticabal, Brazil.
Ribeiro F.G., Jorge A.M., Francisco C.M., Castilhos A.M., Peres C.M. and Silva M.B. (2015). Simbióticos e monensina sódica no desempenho e na qualidade da carne de novilhas mestiças Angus confinadas. Pesq. Agropec. Bras. 50, 958-966.
Rigobelo E.C. (2014). Utilização de probiótico e monensina sódica sobre o desempenho produtivo e características de carcaça de bovinos Nelore terminados em confinamento. Rev. Bras. Saúde Prod. Anim. 15, 415-424.
Santos M.E.R. (2009). Capim braquiária diferido e adubado com nitrogênio: Produção e características da forragem. Rev. Bras. Zootec. 8, 650-656.
SAS Institute. (2004). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Uyeno Y., Shigemura S. and Shimosato T. (2015). Effect of Probiotics/Prebiotics on Cattle Health and Productivity. Microbes Environ. 30, 126-132.
Valadares Filho S.C., Silva L.F.C., Gionbelli M.P., Rotta P.P., Marcondes M.I., Chizzotti M.L. and Prados L.F. (2016). BR-CORTE: nutrient requirements of zebu and crossbred cattle. Suprema Grafica Ltda., Viçosa, Brazil.
Van Soest P.J., Robertson J.B. and Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Vohra A., Syal P. and Madan A. (2016). Probiotic yeasts in livestock sector. Anim. Feed Sci. Technol. 219, 31-47.
Wegerner H.C. (2003). Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol. 6, 439-445.