Nanocrystalline TiO2 as an efficient and reusable catalyst for the one-pot synthesis of polyhydroquinolien derivatives via Hantzsch reaction
الموضوعات : Iranian Journal of CatalysisFarhad Shirini 1 , Seyyed Vahid Atghia 2 , Meysam Alipour Khoshdel 3
1 - Department of Chemistry, College of Science, University of Guilan, Rasht, zip code 41335, I.R. Iran.
2 - Department of Chemistry, College of Science, University of Guilan, Rasht, zip code 41335, I.R. Iran.
3 - Department of Chemistry, College of Science, University of Guilan, Rasht, zip code 41335, I.R. Iran.
الکلمات المفتاحية: Heterogeneous catalysis, Nanocrystalline TiO2, Hantzsch reaction, Polyhydorquinolie derivatives, one-pot condensation reaction,
ملخص المقالة :
An efficient synthesis of polyhydroquinoline derivatives was reported via four-component coupling reactions of aldehydes, 1,3-dicarbonyl ketones (dimedone or 1,3-cyclohexanedione), ethyl acetoacetate or methyl acetoacetate and ammonium acetate in the presence of a catalytic amount of nanocrystalline TiO2 under solvent free conditions. The reported method is mild, rapid and has the advantages such as heterogeneous catalysis, simple work-up procedure, recyclability of the catalyst and purification of products without chromatographic methods.
[1] F. Bossert, H. Meyer, E. Wehinger, Angew. Chem., Int. Ed.Engl. 20 (1981) 762–769.
[2] H. Nakayama, Y. Kasoaka, Heterocycles 42 (1996) 901–909.
[3] F. R. Buhler, W. J Kiowski, Hypertens. 5 (1987) S3-10.
[4] J. L. Reid, P. A. Meredith, F. Pasanisi, J. Cardiovasc. Pharmacol. 7 (1985) 18-20.
[5] V. Klusa, Drugs Future 20 (1995) 135–138.
[6] R. G. Bretzel, C. C. Bollen, E. Maester, K. F. Federlin, Am. J. Kidney. Dis. 21 (1993) 54–63.
[7] R. G. Bretzel, C. C. Bollen, E. Maester, K. F. Federlin, Drugs Future 17 (1992) 465–468.
[8] R. Boer, V. Gekeler, Drugs Future 20 (1995) 499–509.
[9] M. Li, Z. Zuo, L. Wen, S. J. Wang, J. Comb. Chem. 10 (2008) 436-441.
[10] S. J. Tu, J. F. Zhou, X. Deng, P.J. Cai, H. Wang, J. C. Feng, Chin. J. Org. Chem. 21 (2001) 313-316.
[11] S. J. Jiang, Z. Q. Lu, J. Loa, T. P. Synlett (2004) 831-835.
[12] X. Y. Zhang, Y. Z. Li, X. S. Fan, G. R. Qu,X. Y. Hu, J. J. Wang, Chin. Chem. Lett. 17 (2006) 150-152.
[13] N. Tewari, N. Dwivedi, R. P. Tripathi, Tetrahedron Lett. 45 (2004) 9011–9014.
[14] G. V. M. Sharma, K. L. Reddy,P. S. Lakshmi, P. R. Krishna, Synthesis (2006) 55–58.
[15] M. M. Heravi, K. Bakhtiari, N. M. Javadi, F. F. Bamoharram, M. Saeedi, H. O. Oskooie, J. Mol. Catal. A: Chem. 264 (2007) 50–52.
[16] S. Ko, M. N. V. Sastry, C. Lin, C. F. Yao, Tetrahedron Lett. 46 (2005) 5771–5774.
[17] M. Maheswara,V. Siddaiah, Y. K. Rao, Y. M. Tzeng, C. Sridhar, J. Mol. Catal. A: Chem. 260 (2006) 179–180.
[18] R. Gupta, S. Paul, A. Loupy, Synthesis (2007) 2835–2838.
[19] M. Maheswara, V. Siddaiah, G. L. Damu, C. Venkata Rao, Arkivoc 2 (2006) 201-206.
[20] M. Z. Kassaee, M. Masrouri, F. Movahedi, Monatsch. Chem. 14 (2010) 317-322.
[21] J. L. Donelson, R. A. Gibbs, S. K. De, J. Mol. Catal. A: Chem. 256 (2006) 309-311.
[22] B. Das, B. Ravikanth, R. Ramu, B. Vittal Rao, Chem. Pharm. Bull. 54 (2006) 1044-1045.
[24] S. R. Cherkupally, R. Mekalan, Chem. Pharm. Bull. 56 (2008) 1002-1004.
[25] S. Kumar, P. Sharma, K. K. Kapoor, M. S. Hundal, Tetrahedron 64 (2008) 536-542.
[26] K. A. Undale, T. S. Shaikh, D. S. Gaikwad, D. M. Pore, C. R. Chimie 14 (2011) 511–515.
[27] D. M. Antonelli, Y. J. Ying, Angew. Chem. Int. Ed. Engl. 34 (1995) 2014-2017.
[28] D. M. Antonelli, Microporous Mesoporous Mater. 30 (1999) 315-319.
[29] F. Shirini, M. Alipour Khoshdel, M. Abedini, S. V. Atghia, Chin. Chem. Lett. 22 (2011) 1211–1214.
[30] M. Lakshmi Kantam, S. Laha, J. Yadav, B. Sreedhar, Tetrahedron Lett. 47 (2006) 6213-6216.
[31] M. Hosseini-Sarvari, Acta. Chim. Slov. 54 (2007) 354-359.
[32] M. Z. Kassaee, R. Mohammadi, H. Masrouri, F. Movahedi, Chin. Chem. Lett. 22 (2011) 1203-1206.
[33] J. L. Ropero-Vega, A. Aldana-Péreza, R. Gómez, M. E. Nino-Gómez, Appl. Catal. A: Gen. 379 (2010) 24–29.
[34] F. Shirini , M. Mamaghani, S. V. Atghia, Catal.Commun. 12 (2011) 1088–1094.