Application of TiO2–zeolite as photocatalyst for photodegradation of some organic pollutants
الموضوعات : Iranian Journal of Catalysis
1 - Department of Chemistry, Islamic Azad University, Shahreza Branch, Shahreza, Iran
الکلمات المفتاحية: Photodegradation, TiO2–zeolite X, Adsorption, Safranin Orange, Methylene blue and 2, 4–dinitroaniline,
ملخص المقالة :
Immobilization of catalysts on the surface of some inert supports makes therecovering step easier. Because of the specific physicochemical properties, zeolites are good candidate as catalyst supports. In this study, zeolite X was synthesized by natural kaolin and TiO2 was incorporated into zeolite phase by impregnation method. Degradation of Safranin Orange, methylene blue and 2,4–dinitroaniline was studied in the presence and absence of ultraviolet radiation. The effect of experimental parameters including TiO2 loading,photocatalyst amount, irradiation time, pH and initial concentration were studied. Adsorption and photodegradation of the pollutants followed first–order kinetics.Adsorption isotherms were analysed using Langmuir and Freundlich models. The higher activity obtained for TiO2supported onzeolite X is attributed to the greater adsorption of the pollutants on the zeolite surface as compared to pure TiO2.
[1] C. Hachem, F. Bocquillon, O. Zahraa, M. Bouchy, Decolourization of textile industry wastewater by the photocatalytic degradation process, Dyes Pigments 49 (2001) 117–125.
[2] A. Reife, H.S. Freeman, H.C. Freeman, Environmental Chemistry of Dyes and Pigments, 1st ed., Wiley–Interscience, USA, 1995.
[3] H. Zollinger, Color Chemistry, VCH Publishers, New York, 1987.
[4] A. Dabrowski, Adsorption from theory to practice, Advances Colloid and Interface Science 93 (2001) 135-224.
[5] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal. B: Environ. 31 (2001) 145–157.
[6] M.P. Gupta and P.K. Bhattacharya, J. Chem. Tech. Biotechnol. 35 (1985) 23–32.
[7] M.A. Dweib, ed., Adsorption of dyes from their solutions using natural clays. MSc Thesis, University of Jordan, 1993.
[8] B. Armaana, M. Turana, M.S.Çelikb, Equilibrium studies on the adsorption of reactive azo dyes into zeolite, Desalination 170 (2004) 33–39
[9] Sanghi, R. and Bhattacharya, B., Review on decolorization of aqueous dye solutions by low cost adsorbents, Coloration Technology 118 (2002) 250-269.
[10] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C: 1(2000) 1-21.
[11] N. Serpone, E. Perizzetti, Photocatalysis- Fundamentals and Applications. Wiley, New York, 1989.
[12] M.A. Fox, K.E. Doan, M.T. Dulay, Res. Chem. Intermed. 20 (1994) 711.
[13] J. Cunningham, G. Al-Sayyed, S. Stijarani, in: G.R. Helz, R.G. Zepp, D.G. Crosby, Aquatic and Surface Photochemistry, Lewis, Publishers, Boca Raton, FL, (1994, Chapter 22)
[14] R. Comparelli, E. Fanizza, M.L. Curri, P.D. Cozzoli, G. Mascolo, R. Passino, A. Agostiano, J. Appl. Catal. Environ. 55 (2005) 81-91.
[15] I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal. B 49 (2004) 1–14.
[16] Z. Wang, W. Cai, X. Hong, X. Zhao, F. Xu, C. Cai, Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources, Appl. Catal. B 57 (2005) 223–231.
[17] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.
[18] S. Gelover, P. Mondragón, A. Jiménez. Titanium Dioxide Sol-gel Deposited Over Glass and its Application as a Photocatalyst for Water Decontamination. J. Photochem. Photobio. A: Chem. 165 (2004) 241-246.
[19] K. Ventaka Subba Rao, A. Rachel, M. Subrahmanyam, P. Boule. Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants. Appl. Catal. B: Environ. 46 (2003) 77-85.
[20] V.K.S. Rao, M. Subrahmanyam, P. Boule. Immobilized TiO2 photocatalyst during long-term use: decrease of its activity. Appl. Catal. B: Environ. 49 (2004) 239-249.
[21]S. Qourzal, A. Assabbane, Y. Ait-Ichou. Synthesis of TiO2 via hydrolysis of titanium tetraisopropoxide and its photocatalytic activity on a suspended mixture with activated carbon in the degradation of 2-naphthol, J. Photochem. Photobio. A: Chem.163(2004) 317-321.
[22] R.,Yuan, R. Guan, J. Zheng. Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers, J. Colloid Interface Sci. 282(2005) 87-91.
[23]A. Bhattacharyya, S. Kawi, M.B. Ray,Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents. Catalysis Today 98 (2004) 431–439
[24]M. Takeuchi, T. Kimura, M. Hidaka, D. Rakhmawaty, M. Anpo, J. Catal. 246, (2007) 235–240
[25] K. Hofstandler, K. Kikkawa, R. Bauer, C. Novalic, G. Heisier, Environ. Sci. Technol. 1994, 28, 670.
[26] S. Sato, Effects of surface modification with silicon oxides on the photochemical properties of powdered titania, Langmuir. 4, (1988) 1156-1159
[27] V. Durgakumari, Subrahmanyam, M.; Rao, K.V. S.; Ratnamala, A.; Noorjahan, M.; Tanaka, K. J. Appl Catal.A: 234(2002) 155–165.
[28] G. Li, X.S. Zhao, Madhumita B. Ray advanced oxidation of orange II using TiO2 supported on porous adsorbents: The role of pH, H2O2 and O3, Separation and Purification Technology 55 (2007) 91–97
[29] C. Bouvy, W. Marine, R. Sporken, Su, B.L. J. Chem. Phys. Letters. 428 (2006), 312-316.
[30] M.V. Shankar, K.K. Cheralathan, A. Banumathi, M. Palanichamy, V. Murugesan, J. Mole. Catal. A: 223 (2004) 195–200.
[31] M.A. Abdullah, F.K. Chong Dual-effects of adsorption and photodegradation of methylene blue by tungsten-loaded titanium dioxide Saepurahman, Chemical Engineering 158 (2010) 418–425
[32] N. Takeda, M. Ohtani, T. Torimoto, S. Kuwabata and H. Yoneyama, J. Phys. Chem. B 101 (1997), p. 2644
[33] S. Chandrasekhar, P.N. Pramada, Kaolin-based zeolite Y, a precursor for cordierite ceramics. Applied Clay Science 27 (2004) 187– 198
[34] S. Chandrasekhar, P.N. Pramada, J. Porous. Mater. 6 (1999) 283-297.
[35] X. Liu, K. K. Iu, J. K. Thomas, J. Chem. Soc. Faraday Trans, 89 (1993)
[36] Y. Kim, M. Yoon. TiO2/Y-Zeolite encapsulating intramolecular charge transfer molecules: a new photocatalyst for photoreduction of methyl orange in aqueous medium, Journal of Molecular Catalysis A: Chemical 168, 257-263(2001)
[37] Y. Xu, X. Chen, Chem. Ind. 6, 497 (London, 1990)
[38] S. Anandan, M. Yoon. Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4 (2003) 5–18
[39] X. Liu, K. K. Iu, J. K. Thomas, J. Chem. Soc. Faraday Trans, 89 (1993)
[40] C.C. Wang, C.K. Lee, M.D. Lyu, L.C. Juang, J. Dyes and Pigments.xx (2007)1-8 Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters
[41] M.H. Habibi, H. Vosooghian, Photochem. Photobiol. A 174, (2005)45-52
[42] M.A. Rauf, S.B. Bukallah, A. Hamadi, A. Sulaiman, F. Hammadi, Chem. Eng. 129, (2007)167–172
[43] C.C. Wang, C.K. Lee, M.D. Lyu, L.C. Juang, J. Dyes and Pigments.76, (2008)817-824
[44] E. Pehlivan, T. Altun, S. Parlayici.Utilizartion of barley straws as biosorbents for Cu2+ and Pb2+ ions, J. Hazard. Mater. 164, (2008) 982-986
[45] D. Lu, Q. Cao, X. Cao, F. Luo, Removal of Pb using the modified lawny grass: Mechanism, Kinetics, equilibrium and thermodynamics studies. J. Hazard.Mater. 166, (2009)239-247
[46] Bandara, J.; Nadtochenko, V.; Kiwi, J.; Pulgarin,C. Water Sci. Technol. 1997, 35, 87.
[42] C. Walling, Acc. Chem. Res. 8, (1975)125
[47] N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A Chemistry 157, (2003)111-116
[48] Adsorption ot safranin-T from wastewater using waste materials-activated carbon and activated rice husks Gupta, V.K.; Mittal, A.; Jain, R.; Mathur, M.; Sikarwar, S J OF Colloid and Interface Sience 303(2006)80-86
[49] CS. Turchi, DF. Ollis, J. Catal. 122, (1990) 92-178
[50] M.A. Abdullah, L. Chiang, M. Nadeem, Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by amberlite polymeric adsorbents, Chem. Eng. J. 146 (2009) 370–376.