Preparation and Characterization of WO3 Nanosheets and Au/WO3 Nanocomposite for Rabid Photocatalytic degradation of methylene blue dye
الموضوعات : Iranian Journal of CatalysisFatima Allawi Abdul Sajad 1 , Hanaa Egzar 2 , Mazin MAhdi 3
1 - Department of Chemistry, College of Science, University of Kufa, Najaf, Iraq
2 - Department of Chemistry, College of Science, University of Kufa, Najaf, Iraq
3 - Department of Physics, College of Science, University of Basrah, Basra, Iraq
الکلمات المفتاحية: nanocomposite, Photodegradation, Methylene blue dye, Au/WO3, Nanosheets,
ملخص المقالة :
The sol-gel technique is employed for the synthesis of tungsten trioxide (WO3) nanosheets. The Au/WO3 nanocomposite is prepared using laser ablation employing an Nd-YAG laser operating at a wavelength of 1064 nm and utilizing gold metal. The SEM images demonstrate that WO3 was formed as nanosheets with a thickness between 36nm and 80nm. X-ray diffraction (XRD) patterns confirmed the monoclinic crystal structure and high crystallinity of the WO3 structure. The optical absorption of both WO3 nanosheets and Au/WO3 nanocomposite exhibited a pronounced absorption edge, with an energy gap of 2.52 eV and 2.41 eV, respectively. The photocatalytic activity of WO3 nanosheets and Au/WO3 nanocomposite was determined by degrading Methylene blue (MB) dye under visible light irradiation using different catalyst doses and pH values. The WO3 nanosheets and Au/WO3 nanocomposites that were prepared demonstrate a fast degradationof MB dye. The highest photodegradation efficiency (PDE) of MB dye was 75.9% when 0.05 g of Au/WO3 nanocomposite was exposed to 7 pH for 6 min of irradiation. Nevertheless, an increase of pH led to a corresponding rise in PDE. Particularly, the PDE values reached 85.5% and 95.7% when using 0.1 g of WO3 nanosheets and Au/WO3 nanocomposite, respectively, under the conditions in a pH level of 12 and an irradiation duration of 6 minutes.
[1] M.J. Kadhim, M. A. Mahdi, A. M. Selman, S.K.J. Al-Ani, J.J. Hassan, Iran. J. Catal. 13(2023) 1–21.
[2] A. Rostami‑Vartooni, L. Rostami, M. Bagherzadeh, Mater. Sci. 30(2019) 21377–21387.
[3] R. Sridharan, V. G. Krishnaswamy, K. M. Archana, R. Rajagopal, D. Thirumal Kumar, C. George Priya Doss, S. N Applied Sciences. 3(2021) 1–9.
[4] D. S. Priti Bansal, Damanjit Singh, Sep. Purif. Technol. 72(2010) 357–365.
[5] A.E. Ramírez M. Montero-Muñoz , L.L. López , J.E. Ramos-Ibarra, J. A. H. Coaquira, B. Heinrichs, C. A. Páez, Sci. Rep., 45(2021)1–9.
[6] Z. Zhang A. Zada, N. Cui, N. Liu, M. Liu, Y. Yang, D. Jiang, J. Jiang, S. Liu, Catalysts. 11(2021) 1–12.
[7] H. Derikvandi and A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 9 (2016) 1–51.
[8] N. Pourshirband, A. Nezamzadeh-Ejhieh, S. Nezamoddin, S. N. Mirsattari, J. Pre-proo, 20(2020)1–51.
[9] A. Yousefi and A. Nezamzadeh-Ejhieh, Iran. J. Catal. 11(2021) 247–259.
[10] M.J. Kadhim, M.A. Mahdi, J.J. Hassan, Nanotechnology. 32(2021) 1–15.
[11] S. Yuju, T. Xiujuan, S. Dongsheng, Z. Zhiruo, and W. Meizhen, Ecotoxicol. Environ. Saf. 259(2023) 114988.
[12] Y. Xu and T. Chen, Int. J. Electrochem. Sci. 18(2023)100055
[13] A. Yousefi and A. Nezamzadeh-ejhieh, Mater. Res. Bull. 148(2022)111669.
[14] T. Ohashi, T. Sugimoto, K. Sako, S. Hayakawa, K. Katagiri, K. Inumaru, Catal. Sci. Technol. 10(2014) 1–16.
[15] M.V.C Margaux Desseigne, Véronique, M.A. Madigou, Photochem. Photobiol. 437(2023)1–17.
[16] M. Matalkeh G.K. Nasrallah, F. M. Shurrab, E.S. Al-Absi, W. Mohammed, A. Elzatahry, K. M. Saoud, Results Eng. 13(2022)100313.
[17] S. D. Khairnar, Iran. J. Catal. 8(2018)143–150.
[18] X. Song, W. Guo, Y. Guo, N. Mushtaq, M.A.K. Yousaf Shah, M.S. Irshad, P.D. Lund, M.I. Asghar , Crystals . 11(2021) 1–12.
[19] B. Manikandan, K. R. Murali, and R. John, Iran. J. Catal. 11(2021) 1–11.
[20] N. Omrani and A. Nezamzadeh-Ejhieh, Sep. Purif. Technol. 10(2019)1–87.
[21] N. Pourshirband, A. Nezamzadeh-Ejhieh, S. N. Mirsattari, J. Chem. Phys. Lett. 20 (2020)1–51.
[22] N. Pourshirband, A. Nezamzadeh-Ejhieh, J. Chem. Phys. Lett. 761(2020)1–51.
[23] H. Wook, E. Jung, S. Hong, Chem. Eng. J. 161(20210) 285–288.
[24] A. N. Rao, B. Sivasankar, V. Sadasivam, J. Mol. Catal. A. 306(2009) 77–81.
[25] M. G. Peleyeju and E. L. Viljoen, J. Water Process Eng. 40(2021) 01930.
[26] G. U. S. Awais, Muhammad, Sanya Khursheed, Rida Tehreem, Sirajuddin, Young Sun Mok, Appl. Catal. A Gen. 118764(2022)1–6.
[27] A. Nezamzadeh Ejhieh, M. Khorsandi, J. Hazard. Mater. 176(2010) 629–637.
[28] A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Chem Eng. J. 228 (2013) 631–641.
[29] T. K. N Tran, V.T. Le, T. H. Nguyen, V.D. Doan, Y. Vasseghian, and H. S. Le, Korean J Chem Eng. 40(2023)1650–1660.
[30] A. Nezamzadeh and M. Khorsandi, J. Hazard. Mater. 176(2010) 629–637.
[31] A. Sobhani-Nasab, M. Eghbali-Arani, S.M. Hosseinpour-Mashkani, F. Ahmadi, M. Rahimi-Nasrabadi, V. Ameri, Iran J Catal. 10(2020) 91-99.
[32] B. Divband, A. Jodaie, and M. Khatmian, Iran. J. Catal. 9(2019) 63–70.
[33] A. Sobhani-Sasab, M. Eghbali-Arani, S. M. Hosseinpour-Mashkani, F. Ahmadi, M. Rahimi-Nasrabadi, V. Ameri, Iran. J. Catal. 10(2020) 91–99.