La2O3 as a very effective double-functional catalyst for the production of 2-amino-4-aryl-4H-pyrans and Pyrazolopyranopyrimidines
الموضوعات : Iranian Journal of CatalysisAlireza Kohzadian 1 , Rohollah Fathollahi 2 , Mostafa Karami 3 , Esmail Korani 4 , Abdolkarim Zare 5
1 - Department of Chemistry, Faculty of Sciences, Ilam Branch, Technical and Vocational University (TVU), Ilam, Iran
2 - Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran
3 - Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran
4 - Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
5 - Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran
الکلمات المفتاحية: One-pot, Solvent-free conditions, Multi-component reaction, Dual-functional catalyst, Lanthanum(III) oxide, 2-amino-4-aryl-4H-pyrans, Pyrazolopyranopyrimidines,
ملخص المقالة :
Lanthanum (III) oxide (La2O3) was applied as an efficient bifunctional catalyst to develop a new methodology in the production of 2-amino-4-aryl-4H-pyrans and pyrazolopyranopyrimidines in the absence of solvent. In both synthetic protocol, due to the dual functionality of lanthanum (III) oxide (i.e. having basic and acidic Lewis sites), it was very useful and general, and plausible mechanisms were presented in support of this generality and high capability. The current protocol featured environmentally friendly conditions, the ability to recycle and reuse the heterogeneous catalyst up to 6 times, providing products in short times with high yields, easy work-up and no need for difficult steps of catalyst synthesis by using a commercially available catalyst, which makes it an appealing route for the preparation of these derivatives.
[1] H. N. Hafez, A. G. Alshammari, A. R. El-Gazzar, Acta Pharm. 65 (2013) 399-412.
[2] K. T. Patil, D. K. Jamale, N. J. Valekar, P. T. Patil, P. P. Warekar, G. B. Kolekar, P. V. Anbhule, Synth. Commun. 47 (2017) 111-120.
[3] A. R. Saundane, K. Vijaykumar, A. V. Vaijinath, Bioorg. Med. Chem. Lett. 23 (2013) 1978-1984.
[4] H.N. Hafez, A.G. Alshammari, A.R. El-Gazzar, Acta Pharm. 65 (2015) 399-412.
[5] A.R. Saundane, K. Vijaykumar, A.V. Vaijinath, Bioorg. Med. Chem. Lett. 23 (2013) 1978-1984.
[6] Y. B. Li, J. Liu, Z. X. Huang, J. H. Yu, X. F. Xu, P. H. Sun, J. Lin, W. M. Chen, Eur. J. Med. Chem. 158 (2018) 753-766.
[7] M. E. A. Zaki, H. A. Soliman, O. A. Hiekal, A. E. Rashad, Z. Naturforsch. C. 61 (2006) 1-5.
[8] A. Ganesan, J. Kothandapani, S. G. Subramaniapillai, RSC Adv. 6 (2016) 20582-20587.
[9] N. V. Lakshmi, P. Thirumurugan, K.M. Noorulla, P. T. Perumal, Bioorg. Med. Chem. Lett. 20 (2010) 5054-5061.
[10] S. Santhisudha, T. Sreekanth, S. Murali, B. V. Kumar, M. A. Devi, C. S. Reddy, Cardiovasc. Hematol. Agents Med. Chem. 14 (2016) 167-174.
[11] Z. Guo, W. Zhu, H. Tian, Chem. Commun. 48 (2012) 6073–6084.
[12] Y. Zhou, Y. Liu, Y. Guo, M. Liu, J. Chen, X. Huang, W. Gao, J. Ding, Y. Cheng, H. Wu, Dyes Pigm. 141 (2017) 428-440.
[13] D.Y. Kim, J.N. Kim, H.J. Kim, Spectrochim. Acta, Part A. 122 (2014) 304-308.
[14] C. Maglione, A. Carella, C. Carbonara, R. Centore, S. Fusco, A. Velardo, A. Peluso, D. Colonna, A. Lanuti, A. Di Carlo, Dyes Pigm. 133 (2016) 395-405.
[15] G. Li, Y. Liu, X. Yang, Y. Ye, J. Fluoresc. 29 (2019) 195–201.
[16] L. Khazdooz, A. Zarei, T. Ahmadi, H. Aghaei, L. Golestanifar, N. Sheikhan, Res. Chem. Intermed. 44 (2018) 93-115.
[17] S. Rostamnia, A. Morsali, Inorg. Chim. Acta. 414 (2014) 113-118.
[18] M. Esmaeilpour, J. Javidi, F. Dehghani, F. N. Dodeji, RSC Adv. 5 (2015) 26625-36633.
[19] H. R. Saadati‑Moshtaghin, F. M. Zonoz, Res. Chem. Intermed. 44 (2018) 93-115.
[20] M. Shahabi Nejad, H. Sheibani, Catal Lett. 148 (2018) 125-133.
[21] S. Nemouchi, R. Boulcina, B. Carboni, A. Debache, C. R. Chim. 15 (2012) 394-397.
[22] S. Chehab, Y. Merroun, T. Ghailane, R. Ghailane, S. Boukhris, B. Lakhrissi, A. Souizi, J. Iran. Chem. Soc. 18 (2021) 2665–2678.
[23] A. R. Moosavi-Zare, M. A. Zolfigol, O. Khaledian, V. Khakyzadeh, M. D. Farahani, H. G. Kruger, New J. Chem. 38 (2014) 2342–2347.
[24] A. U. Khandebharad, S. R. Sarda, C. H. Gill, M. G. Soni, B. R. Agrawal, Res. Chem. Intermed. 42 (2016) 5779–5787.
[25] A. Ghobadpoor, M. M. Eskandari, A. Zare, M. Karami, Iran. J. Catal. 11 (2021) 69–75.
[26] S.V. Akolkar, N.D. Kharat, A.A. Nagargoje, D.D. Subhedar, B.B. Shingate, Catal. Lett. 150 (2015) 450–460.
[27] S. Dastkhoon, Z. Tavakoli, S. Khodabakhshi, M. Baghernejad, M. K. Abbasabadi, New J. Chem. 39 (2021) 7268–7271.
[28] M. R. Tipale, L. D. Khillare, A. R. Deshmukh, M. R. Bhosle, J. Heterocycl. Chem. 55 (2018) 716–728.
[29] Z. Nasresfahani, M. Z. Kassaee, ChemistrySelect. 2 (2017) 9642-9646.
[30] X. T. Li, A. D. Zhao, L. P. Mo, Z. H. Zhang, RSC Adv. 4 (2014) 51580 –51588.
[31] P. Patil, A. Yadav, L. Bavkar, B. N. Nippu, N. D. Satyanarayan, A. Mane, A. Gurav, S. Hangirgekar, S. Sankpal, J. Mol. Struct. 1242 (2021) 130672.
[32] S. Sadjadi, M. M. Heravi, M. Daraie, Res. Chem. Intermed. 43 (2017) 2201–2214.
[33] S. Khodabakhshi, A. Rashidi, Z. Tavakoli, M. Baghernejad, A. Yadegari, Monatsh. Chem. 147 (2016) 791–795.
[34] D. Dharmendra, P. Chundawat, Y. Vyas, C. Ameta, J. Chem. Sci. 134 (2022) 47.
[35] R. Kordnezhadian, M. Shekouhy, S. Karimian, A. Khalafi-Nezhad, J. Catal. 380 (2019) 91–107.
[36] M. Ziyaadini, S. J. Roudbaraki, M. Ghashang, Org. Prep. Proced. Int. 52 (2020) 311–318.
[37] Z. Abshirini, N. Lotfifar, A. Zare, Org. Prep. Proced. Int. 52 (2020) 428–433.
[38] S. Zhaleh, N. Hazeri, M. R. Faghihi, M. T. Maghsoodlou, 42 (2022) 558–567.
[39] A. Zare, A. Kohzadian, Z. Abshirini, S. S. Sajadikhah, J. Phipps, M. Benamarad, M. H. Beyzavi, New J. Chem. 43 (2019) 2247–2257.
[40] A. Shabanloo, R. Ghorbani-Vaghei, S. Alavinia, Org. Prep. Proced. Int. 52 (2020) 402–409.
[41] A. Kohzadian, A. Zare, Silicon, 12 (2020) 1407–1415.
[42] F. Tamaddon, S. Moradi, J. Mol. Catal. A: Chem. 370 (2013) 117–122.
[43] P.K. Singh, B. Khuntey, S.R. Bhardiya, M. Singh, V.K. Rai, A. Rai, J. Heterocycl. Chem. 60 (2023) 232-240.
[44] K. N. Papageridis, N. D. Charisiou, S. Douvartzides, V. Sebastian, S. J. Hinder, M. A. Baker, A. A. AlKhoori, S. I. AlKhoori, K. Polychronopoulou, M. A. Goula, RSC Adv. 11 (2021) 8569–8584.
[45] S. Yan, M. Kim, S. O. Salley, K. Y. S. Ng, Appl. Catal., A. 353 (2009) 203–212.
[46] B. Maleki, R. Nejat, H. Alinezhad, S. M. Mousavi, B. Mahdavi, M. Delavari, Org. Prep. Proced. Int. 52 (2020) 328–339.
[47] H. Ishitani, Y. Saito, T. Tsubogo, S. Kobayashi, Org. Lett. 18 (2016) 1346–1349.
[48] M. Abdoli, N. Nami, Z. Hossaini, J. Heterocycl. Chem. 58 (2021) 523–533.
[49] H. S. Liu, K. J. Wang, X. Y. Cao, J. X. Su, Z. Gu, RSC Adv. 11 (2021) 12532–12542.
[50] M. Mahmoodi Fard Chegeni, A. Bamoniri, B. B. F. Mirjalili, Polycycl. Arom. Compd. 42 (2022) 391–399.
[51] T. Salehi-Hamzehkhani, M. Hatami, A. Zare, A. R. Moosavi-Zare, A. Parhami, Z. Khedri, H. Kabgani, M. Beikagha, R. Salamipoor, Iran. J. Catal. 4 (2014) 295–303.
[52] A. Zare, A. Hasaninejad, A. R. Moosavi Zare, A. Parhami, H. Sharghi, A. Khalafi-Nezhad, Can. J. Chem. 85 (2007) 438–444.
[53] M. A. Amrollahi, F. Ashayeri-Harati, Org. Prep. Proced. Int. 52 (2020) 282–289.
[54] V. B. Gade, A. K. Rathi, S. B. Bhalekar, J. Tucek, O. Tomanec, R. S. Varma, R. Zboril, S. N. Shelke, M. B. Gawande, ACS Sustainable Chem. Eng. 5 (2017) 3314–3320.
[55] M. Shanshak, Srinivasa Budagumpi , Jan Grzegorz Małecki, Rangappa S. Keri, Appl. Organomet. Chem. 34 (2020) e5544.
[56] A. Khazaei, A. R. Moosavi-Zare, Z. Mohammadi, A. Zare, V. Khakyzadeh, G. Darvishi, RSC Adv. 3 (2013) 1323-1326.