Synthesis of SO4/ZrO2 Catalyst and its Application in the Conversion of Ethanol to Diethyl Ether
الموضوعات : Iranian Journal of CatalysisRena Septiyaningrum 1 , Amalia Kurnia Amin 2 , Wega Trisunaryanti 3 , Karna Wijaya 4
1 - Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
2 - Research Center for Chemistry, National Research and Innovation Agency, South Tangerang 15314, Indonesia
3 - Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
4 - Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
الکلمات المفتاحية: Optimization, diethyl ether, Sulfated Zirconia, Catalysts, Ethanol dehydration,
ملخص المقالة :
SO4/ZrO2 heterogeneous acid catalyst was prepared by wet impregnation method from ZrO2 precursor involved variations in H2SO4 concentration (0.5; 1.0; 1.5 M) and calcination temperature (400, 500, 600 ℃) to yield catalyst with the highest acidity value. The catalysts produced were characterized using Fourier Transform Infrared (FTIR) spectrometer, X-Ray Diffractometer (XRD), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX), Thermogravimetry and Differential Scanning Calorimeter (TGA-DSC), Gas Sorption Analyzer (GSA), and acidity test using the gravimetric method with ammonia vapor. The catalyst used to observe activity and selectivity in the dehydration reaction of ethanol to diethyl ether (DEE) was SO4/ZrO2 catalyst with the highest total acidity. The liquid product from the dehydration of ethanol was analyzed using Gas Chromatography (GC). The ZS‐1.5‐500 catalyst showed the best activity and selectivity in the dehydration reaction of ethanol to DEE at a temperature of 225 ℃, yielding 49.85% (w/w) ethanol conversion and a 1.62% DEE selectivity.
[1] B. Tabah, I.N. Pulidindi, V.R. Chitturi, L.M.R. Arava, A. Varvak, E. Foran, A. Gedanken, J. Mater. Chem. A. 5 (2017) 15486–15506.
[2] Q. Ma, Q. Zhang, Z. Zheng, Fuel 288 (2021) 119832–119840.
[3] J. Cho, W. Si, W. Jang, D. Jin, C.L. Myung, S. Park, Appl. Energy 160 (2015) 592–602.
[4] H. Gürbüz, Environ. Prog. Sustain Energy 41 (2022) 13718–13727.
[5] H.Y. Kim, J.C. Ge, N.J. Choi, Appl. Sci. 10 (2020) 1–15.
[6] N. Kosaric, Z. Duvnjak, A. Farkas, H. Sahm, S. Bringer-Meyer, O. Goebel, D. Mayer, Ethanol, Wiley-Ullmann’s Encyclopedia of Industrial Chemistry, New York, 2011.
[7] R. Alviany, A. Wahyudi, I. Gunardi, A. Roesyadi, F. Kurniawansyah, D.H. Prajitno, MATEC Web. Conf. 156 (2018) 1–8.
[8] I. Sezer, Energy Environ. 31 (2020) 179–214.
[9] E. Chaichana, N. Boonsinvarothai, N. Chitpong, B. Jongsomjit, J. Porous Mater. 26 (2019) 599–610.
[10] D.T. Sarve, S.K. Singh, J.D. Ekhe, React. Kinet. Mech. Catal. 131 (2020) 261–281.
[11] C. Autthanit and B. Jongsomjit, J. Oleo Sci. 67 (2018) 235–243.
[12] C. Krutpijit, B. Jongsomjit, J. Oleo Sci. 65 (2016) 347–355.
[13] M. Limlamthong, N. Chitpong, B. Jongsomjit, Bull. Chem. React. Eng. Catal. 14 (2019) 1–8.
[14] G. Garbarino, R.P.P. Vijayakumar, P. Riani, E. Finocchio, G. Busca, Appl. Catal. B Environ. 236 (2018) 490–500.
[15] K. Wijaya, A.R. Putri, S. Sudiono, S. Mulijani, A. Patah, A.C. Wibowo, W.D. Saputri, Catalysts 11 (2021) 1492–1504.
[16] K. Wijaya, M.L.L. Malau, M. Utami, S. Mulijani, A. Patah, A.C. Wibowo, M. Chadrasekaran, J.R. Rajabathar, H.A. Al-Lohedan, Catalysts 11 (2021) 1511–1523.
[17] A.A. Fragoso-Mores de Oca, J.G. Hernández-Cortez, C. Angeles-Chaves, J.S. Valente, J.A. Toledo-Antonio, Mater. Chem. Phys. 291 (2022) 126659–126707.
[18] I.S. Pieta, A. Michalik, E. Kraleva, D. Mrdenovic, A. Sek, E. Wahaczyk, A. Lewalska-Graczyk, M. Krysa, A. Sroka-Bartnicka, P. Pieta, R. Nowakowski, A. Lew, E. M. Serwicka, Catalysts 11 (2021) 660–680.
[19] W. Alharbi, E. Brown, E.F. Kozhevnikova, I.V. Kozhevnikov, J. Catal. 319 (2014) 174–181.
[20] M.F. Hanafi, N. Sapawe, Mater. Today Proc. 19 (2019) 1533–1536.
[21] E. Dahdah, J. Estephane, C. Gennequin, A. Aboukaïs, E. Abi-Aad, S. Aouad, Int. J. Hydrogen Energy 45 (2020) 4457–4467.
[22] A.R. Puigdollers, F. Illas, G. Pacchioni, J. Phys. Chem. C 120 (2016) 4392–4402.
[23] L. Hauli, K. Wijaya, R. Armunanto, Orient. J. Chem. 34 (2018) 1559–1564.
[24] F. Maleki, G. Pacchioni, Top. Catal. 63 (2020) 1717–1730.
[25] Y. Zhou, W. Yang, X. Wang, S. Wang, Y. Wang, L. Zhang, J. Zhang, S. Tao, Ind. Eng. Chem. Res. 59 (2020) 21592–21601.
[26] E. Hong, H.I. Sim, C.H. Shin, Chem. Eng. J. 292 (2016) 156–162.
[27] K. Saravanan, B. Tyagi, H.C. Bajaj, Appl. Catal. B Environ. 192 (2016) 161–170.
[28] Z. Mossayebi, M.J. Parnian, S. Rowshanzamir, Macromol. Mater. Eng. 303 (2018) 1–12.
[29] X. Zhang, A.I.M. Rabee, M. Isaacs, A.F. Lee, K. Wilson, ACS Sustain. Chem. Eng. 6 (2018) 14704–14712.
[30] Y. Qu, Y. Zhao, S. Xiong, C. Wang, S. Wang, L. Zhu, L. Ma, Energy Fuels 34 (2020) 11041–11049.
[31] S. Yu, S. Wu, L. Li, X. Ge, Fuel 276 (2020) 118019–118024.
[32] A.K. Amin, W. Trisunaryanti, K. Wijaya, J. Nano Res. 57 (2019) 31–39.
[33] G. Shi, F. Yu, Y. Wang, D. Pan, H. Wang, R. Li, Renew. Energy 92 (2016) 22–29.
[34] A. Kumar, S. Singhal, S. Agarwal, R.P. Badoni, A.R. Tripathi, Int. J. Chem. Tech. Res. 10 (2017) 350–358.
[35] A.E.A.A. Said, M.A. El-Aal, J. Fuel Chem. Technol. 46 (2018) 67–74.
[36] M. Utami, W. Trisunaryanti, K. Shida, M. Tsushida, H. Kawakita, K. Ohto, K. Wijaya, M. Tominaga, RSC Adv. 9 (2019) 41392–41401.
[37] M. Ejtemaei, A. Tavakoli, N. Charchi, B. Bayati, A.A. Babaluo, Y. Bayat, Adv. Powder Technol. 25 (2014) 840–846.
[38] A.K. Shah, M. Kumar, S.H.R. Abdi, R.I. Kureshy, N.H. Khan, H.C. Bajaj, Appl. Catal. A Gen. 486 (2014) 105–114.
[39] M. Pérez, H. Armendáriz, J.A. Toledo, A. Vázquez, J. Navarrette, A. Montoya, A. Gárcia, J. Mol. Catal. A Chem. 149 (1999)169–178.
[40] M.S.L. Ore, K. Wijaya, W. Trisunaryanti, W.D. Saputri, E. Heraldy, N.W. Yuwana, P.L. Hariani, A. Budiman, S. Sudiono, J. Environ. Chem. Eng. 8 (2020) 104205–104214.
[41] A. Patel, V. Brahmkhatri, N. Singh, Renew. Energy 51 (2013) 227–233.
[42] A.E.A.A. Said, M.M.A. El-Wahab, M.A. El-Aal, J. Mol. Catal. A Chem. 394 (2014) 40–47.
[43] D. Spielbauer, G.A.H. Mekhemer, M.I. Zaki, H. Knözinger, Catal. Letters 40 (1996) 71–79.
[44] I.T.A. Aziz, W.D. Saputri, W. Trisunaryanti, S. Sudiono, A. Syoufian, A. Budiman, K. Wijaya, Period. Polytech. Chem. Eng. 66 (2022) 101–113.
[45] A.I. Ahmed, S.A.El-Hakam, S.E. Samra, A.A. El-Khouly, A.S. Khder, Colloids Surf. A: Physicochem. Eng. Asp. 317 (2008) 62–70.
[46] F. Heshmatpour, R.B. Aghakhanpour, Adv. Powder Technol. 23 (2012) 80–87.
[47] V.S. Marakatti, S. Marappa, E.M. Gaigneaux, New J. Chem. 43 (2019) 7733–7742.
[48] H. Yuan, Z. Dong, J. He, Y. Wang, H. Zhang, Chem. Eng. Commun. 206 (2019) 1618–1627.
[49] T. Kamsuwan, P. Praserthdam, B. Jongsomjit, J. Oleo Sci. 66 (2017) 199–207.
[50] M.J. Marbun, F. Kurniawansyah, D.H. Prajitno, A. Roesyadi, IOP Conf. Ser. Mater. Sci. Eng. 543 (2019) 012058–012063.