The most important parameters that affect the photocatalytic activity of ZnO nanostructures against organic dyes: A Review
الموضوعات : Iranian Journal of CatalysisMarwa Jawad Kadhim 1 , Mazin Auny Mahdi 2 , Abbas Mohammed Selman 3 , Salwan Kamal Jamel Al-Ani 4 , Jalal Jabar Hassan 5 , Naser Mohammed Ahmed 6
1 - Department of Physics, College of Science, University of Basrah, Basrah, Iraq
2 - Department of Physics, College of Science, University of Basrah, Basrah, Iraq
3 - Department of Pharmacognosy and Medicinal plants, Faculty of Pharmacy, University of Kufa, Najaf, Iraq.
4 - Department of Physics, College of Science, Al-Mustansiriya University, Baghdad, Iraq
5 - Department of Physics, College of Science, University of Basrah, Basrah, Iraq
6 - School of Physics, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
الکلمات المفتاحية: ZnO, Photodegradation, Organic dyes, Photocatalytic Activity,
ملخص المقالة :
Organic dyes are among the main sources of water pollution that cause serious health problems for living organisms. Removing dye pollution from water sources is important because of its high toxicity, so it has attracted the interest of researchers. Heterogeneous photocatalysis based on ZnO is one of the most important methods of pollution treatment. The purpose of this review is to summarize the use of ZnO nanostructure and ZnO modified as photocatalysts.The studied mechanism of dye photocatalytic activity and the most important factors affecting the photocatalytic process are discussed. The major effective parameters associated with the surface and morphology to look upon for the efficient photodegradation of organic pollution are structural and average particle size, surface area, band gap crystalline structure, surface density, and porosity. The photodegradation reactions depend on the state of ionization as well as on the surface charge of the photocatalyst and organic dye because pH will determine the charge of the catalyst according to the medium. On the other hand, the calcination temperature was increased throughout the work to break down the pores, which reduces the surface area of the synthesis photocatalyst. The type of dye has an important influence on the success of the photocatalytic process.
[1] M. N. Chong, B. Jin, C. W. K. Chow, C. Saint, Water Res, 44 (2010) 2997–3027.
[2] A. Ajmal, I. Majeed, R. N. Malik, H. Idriss, M. A. Nadeem, RSC Adv, 4 (2014) 37003–37026.
[3] N. N. Mahamuni, Y. G. Adewuyi, Ultrason Sonochem, 17 (2010) 990–1003.
[4] R. Andreozzi, V. Caprio, A. Insola, and R. Marotta, Catal. Today, 53 (1999) 51–59.
[5] M. S. S. Danish et al., M. S. S. Danish, L. L. Estrella, I. M. A. Alemaida, A. Lisin, N. Moiseev, M. Ahmadi, M. Nazari, M. Wali, H. Zaheb, T, Senjyu, Metals, 11 (2021) 1–25,
[6] M. S. S. Danish, A. Bhattacharya, D. Stepanova, A. Mikhaylov, M. L. Grilli, M. Khosravy and Tomonobu Senjyu, Metals, 10 (2020) 1–20,
[7] H. Liu, Y. Feng, J. Shao, Y. Chen, Z. L. Wang, H. Li, X. Chen, Z. Bian, Nano Energy, 70 (2020), 104499.
[8] S. Vigneshwaran, P. Sirajudheen, C. P. Nabeena, V. P. Sajna, S. Meenakshi, Int. J. Biol. Macromol, 183 (2021), 2088–2099.
[9] Y. Zhang, B. Deng, T. Zhang, D. Gao, A. W. Xu, J. Physic. Chem. C, 114 (2010) 5073–5079.
[10] M. G. Peleyeju, E. L. Viljoen, J. Water Process Eng., 40 (2021) 101930.
[11] X. Chen, Z. Wu, D. Liu, Z. Gao, Nanoscale Res Lett, 12 (2017) 4–13.
[12] Y. Tominaga, T. Kubo, K. Hosoya, Catal Commun, 12 (2011) 785–789.
[13] A. Nezamzadeh-Ejhieh, M. Khorsandi, J Hazard Mater, 176 (2010) 629–637.
[14] A. Mahmoodi, S. Mahmood Mehdinia, A. Rahmani, H. Nassehinia, Iran. J. Catal., 10 (2020) 23-32.
[15] S. Vahabirad, A. Nezamzadeh-Ejhieh, J. Solid State Chem, 310 (2022) 123018.
[16] S. Senobari, A. Nezamzadeh-Ejhieh, Spectrochim Acta A Mol Biomol Spectrosc, 196 (2018) 334–343.
[17] M. Willander, Zinc oxide nanostructures: advances and applications. Taylor & Francis Group, 2014.
[18] W. A. A. Mohamed, H. T. Handal, I. A. Ibrahem, H. R. Galal, H. A. Mousa, A. A. Labib, J. Hazard Mater, 404 (2021) 123962.
[19] D. Upadhaya, D. Dhar Purkayastha, Ceram Int., 46 (2020) 15831–15839.
[20] M. J. Kadhim, M. A. Mahdi, J. J. Hassan, Mater Inter., 2 (2020) 0064–0072.
[21] T. Amakali, Likius. S. Daniel, V. Uahengo, N. Y. Dzade, N. H. de Leeuw, Crystals, 10(2020) 132.
[22] Y. I. Choi, H. J. Jung, W. G. Shin, Y. Sohn, Appl. Surf. Sci., 356(2015) 615–625.
[23] J. J. Hassan, M. A. Mahdi, A. Ramizy, H. A. Hassan, Z. Hassan, Superlattices Microstruct, 53 (2013) 31–38.
[24] S. Ghattavi, A. Nezamzadeh-Ejhieh, J. Mol. Liq., 322 (2021) 114563.
[25] J. J. Hassan, M. A. Mahdi, C. W. Chin, H. Abu-Hassan, Z. Hassan, Sens. Actuators. B Chem., 176 (2013) 360–367.
[26] M. Kamaraj, T. G. Nithya, S. Shyamalagowri, J. Aravind, Mater Lett., 308 (2022) 131128.
[27] X. Zhang, X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Rep., 4 (2014) 4596.
[28] J. J. H. Assan, M. A. M. Ahdi, S. J. K. Asim, N. A. M. A. Hamed, Mater Sci-Pol, 31 (2013) 180–185.
[29] J. J. Hassan, M. A. Mahdi, C. W. Chin, H. Abu-Hassan, Z. Hassan, J. Alloys Compd., 546 (2013) 107–111.
[30] G. H. Gan Siew Mei, P. Susthitha Menon, Mater Res. Express, 7 (2020), 012003.
[31] A. S. Al-Asadi, L. A. Henley, M. Wasala, B. Muchharla, N. Perea-Lopez, V. Carozo, Z. Lin, M. Terrones, K. Mondal, K. Kordas, and S. Talapatra, J. Appl. Phys., 121 (2017), 124303.
[32] R. RatHnasamy, P. Thangasamy, R. Thangamuthu, S. Sampath, V. Alagan, J. Mater. Sci.: Mater. Elec., 28 (2017) 10374–10381.
[33] C. M. Pelicano, H. Yanagi, Appl. Surf. Sci., 506 (2020) 144917.
[34] M. Zouhier, K. Tanji, J. A. Navio, M. C. Hidalgo, A. Kherbeche, J. Photochem. Photobiol A Chem., 390 (2019) 112305.
[35] S. M. Saleh, Spectrochim Acta A Mol Biomol Spectrosc, 211 (2019) 141–147.
[36] S. Kumar, R. D. Kaushik, L. P. Purohit, J. Mol. Liq., 327 (2021) 114814.
[37] E. D. M. Isa, K. Shameli, N. W. C. Jusoh, R. Hazan, J. Nanostructure Chem., 11 (2021) 187–202.
[38] V. T. Le, V. D. Doan, T. T. N. Le, M. U. Dao, T-T. T. Vo, H. H. Do, D. Q. Viet, V. A. Tran, Mater. Lett., 283 (2021) 128749.
[39] J. K. Park, J. K. Park, E. J. Rupa, M. H. Arif, J. F. Li, G. Anandapadmanaban, J. P. Kang, M. Kim, J. C. Ahn, R. Akter, D. C. Yang, S. C. Kang, Optik, 239 (2021) 166249.
[40] D. Chu, Y. Masuda, T. Ohji, K. Kato, Langmuir, 26 (2010) 2811–2815.
[41] M. Y. Guo, A. M. C. Ng, F. Liu, A. B. Djuri, W. K. Chan, H. Su, K. S. Wong, Journal of Physical Chemistry C, 115 (2011) 11095–11101.
[42] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Hazard Mater, 321 (2017) 629–638.
[43] M. Mehrali-Afjani, A. Nezamzadeh-Ejhieh, H. Aghaei, Chem. Phys. Lett., 759 (2020) 137873.
[44] A. Yousefi, A. Nezamzadeh-Ejhieh, Iran. J. Catal., 11 (2021) 247-259.
[45] J. T. Mehrabad, M. Partovi, A. Rad, R. Khalilnezhad, Iran. J. Catal., 9 (2019), 233-239.
[46] A. Rostami-Vartooni, A. Moradi-Saadatmand, M. Bagherzadeh, M. Mahdavi, Iran. J. Catal., 9 (2019) 27-35.
[47] H. R. Pouretedal, M. Fallahgar, S. Pourhasan, M. Nasiri, Iran. J. Catal., 7 (2017) 317-326.
[48] J. J. Hassan, M. A. Mahdi, C. W. Chin, H. Abu-Hassan, Z. Hassan, Physica E Low Dimens Syst. Nanostruct, 46 (2012) 254–258.
[49] A. Elhalil, R. Elmoubarki, M. Farnane, A. Machrouhi, F.Z. Mahjoubi, M. Sadiq, S. Qourzal, N. Barka, Environ Nanotechnol Monit Manag, 10 (2018) 63–72.
[50] W. Bousslama, H. Elhouichet, M. Férid, Optik, 134 (2017) 88–98.
[51] S. Majumder, S. Chatterjee, P. Basnet, J. Mukherjee, Environ Nanotechnol Monit Manag, 14 (2020) 100386.
[52] M. J. Kadhim, M. Mahdi, J. J. Hassan, A. S. Al-Asadi, Nanotechnology, 32 (2021) 195706.
[53] N. L. Gavade, A. N. Kadam, S. B. Babar, A. D. Gophane, K. M. Garadkar, S. W. Lee, Ceram. Int., 46 (2020) 11317–11327.
[54] K. Dib, M. Trari, Y. Bessekhouad, Appl. Surf. Sci., 505 (2020) 144541.
[55] F. M. Sanakousar, C. Vidyasagar, V. M. Jiménez-Pérez, K. Prakash, Mater Sci Semicond Process, 140 (2022) 106390.
[56] M. R. Khan, T. W. Chuan, A. Yousuf, M. N. K. Chowdhury, C. K. Cheng, Catal. Sci. Technol, 5 (2015) 2522–2531.
[57] C. Ding, K. Fu, Y. Pan, J. Liu, H. Deng, J. Shi, Catalysts, 10 (2020) 1–26.
[58] C. M. Magdalane, K. Kanimozhi, M. V. Arularasu, G. Ramalingam, K. Kaviyarasu, Surfaces and Interfaces, 17 (2019) 100346.
[59] S. Y. Janbandhu, A. Joshi, S. R. Munishwar, R. S. Gedam, Appl. Surf. Sci., 497 (2019) 143758.
[60] S. Ghattavi, A. Nezamzadeh-Ejhieh, Compos. B Eng., 183 (2020) 107712, 2020.
[61] L. Kong, J. Guo, J. W. Makepeace, T. Xiao, H. F. Greer, W. Zhou, Z. Jiang, P. P. Edwards, Catal. Today, 335 (2019) 477–484.
[62] M. A. Mahdi, A. Hmood, A. Kadhim, J. J. Hassan, S. Kasim, Z. Hassan, Optik, 127 (2016) 1962–1966.
[63] T. Senasu, T. Chankhanittha, K. Hemavibool, S. Nanan, Mater. Sci. Semicond. Process, 123 (2021) 105558.
[64] I. Zgura, N. Preda, G. Socol, C. Ghica, D. Ghica, M. Enculescu, I. Negut, L. Nedelcu, L. Frunza, C.P. Ganea, S. Frunza, Mater Res. Bull., 99 (2018) 174–181.
[65] S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, J. Phys. Chem. C, 116 (2012) 23653.
[66] J. Aliaga, N. Cifuentes, G. González, C. Sotomayor-Torres, E. Benavente, Catalysts, 8 (2018) 1–13.
[67] W. Sun, S. Meng, S. Zhang, X. Zheng, X. Ye, X. Fu, S. Chen, Journal of Physical Chemistry C, 122 (2018) 15409–15420.
[68] C. Dong, X. Xiao, G. Chen, H. Guan, Y. Wang, Mater Chem. Phys., 155 (2015) 1–8.
[69] S. Chen, W. Zhao, W. Liu, S. Zhang, Appl. Surf. Sci., 255 (2008) 2478–2484.
[70] S. Ghattavia, A. Nezamzadeh-Ejhiehm, Desalination and Water Treatment, 166 (2019) 92-104.
[71] S. Ahmed, Crit. Rev. Environ. Sci. Technol, 42 (2012) 601–675.
[72] F. Zuo, K. Bozhilov, R. J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, P. Feng, Angewandte Chemie International Edition, 51 (2012) 6223–6226.
[73] J. Zhang, B. Tian, L. Wang, M. Xing, J. Lei, Photocatalysis: fundamentals, materials and applications, Springer, 2018.
[74] N. M. Flores, U. Pal, R. Galeazzi, A. Sandoval, RSC Adv., 4 (2014) 41099–41110.
[75] A. C. Dodd, A. J. McKinley, M. Saunders, T. Tsuzuki, J. Nanopart. Res., 8 (2006) 43–51.
[76] A. Di Mauro, M. E. Fragalà, V. Privitera, G. Impellizzeri, Mater. Sci. Semicond. Process, 69 (2017) 44–51.
[77] T. Pauporté and J. Rathouský, Journal of Physical Chemistry C, 111 (2007) 7639–7644.
[78] F. A. L. Sánchez, A. S. Takimi, F. S. Rodembusch, C. P. Bergmann, J Alloys Compd, 572 (2013) 68–73.
[79] M. Y. Guo, A. M. Ching Ng, F. Liu, A. B. Djuri, W. K. Chan, H. Su, K. S. Wong, J. Physic. Chem. C, 115 (2011) 11095–11101.
[80] M. Hasanpour, S. Motahari, D. Jing, M. Hatami, Topics in Catalysis, 2021, https://doi.org/10.1007/s11244-021-01476-3
[81] A. Sobhani-Nasab, M. Eghbali-Arani, S. Mostafa Hosseinpour-Mashkani, F. Ahmadi, M. Rahimi-Nasrabadi, V. Ameri, Iran. J. Catal.,10 (2020), 91-99.
[82] T. An, J. Liu, G. Li, S. Zhang, H. Zhao, X. Zeng, G. Sheng, J. Fu, Appl. Catal. A Gen., 350 (2008) 237–243.
[83] L. He, Z. Tong, Z. Wang, M. Chen, N. Huang, W. Zhang, J. Colloid Interface Sci., 509 (2018) 448–456.
[84] K. Hayat, M. A. Gondal, M. M. Khaled, S. Ahmed, A. M. Shemsi, Appl. Catal. A Gen., 393 (2011) 122–129.
[85] N. Horzum, M. E. Hilal, T. Isik, New Journal of Chemistry, 42 (2018) 11831–11838.
[86] J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song, Z. Sun, Superlattices Microstruct, 50 (2011) 98–106.
[87] D. Aryanto, E. Hastuti, M. Taspika, K. Anam, I. Isnaeni, W. B. Widayatno, A. S. Wismogroho, P. Marwoto, B. W. Nuryadin, A. Noviyanto, S. Sugianto, J. Solgel. Sci. Technol., 96 (2020) 226–235.
[88] A. Umar, R. Kumar, G. Kumar, H. Algarni, S. H. Kim, J. Alloys. Compd., 648 (2015) 46–52.
[89] N. Sharma, R. Jha, S. Baghel, D. Sharma, J. Alloys. Compd., 695 (2017) 270–279.
[90] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. A Chem., 426 (2017) 158–169.
[91] H. chao Liang, X. zhong Li, Y. hua Yang, K. hung Sze, Chemosphere, 73 (2008) 805–812.
[92] S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown, M. A. Hashib, Water Air Soil Pollut, 215 (2011) 3–29.
[93] A. A. El-Bindary, S. M. El-Marsafy, A. A. El-Maddah, J Mol Struct, 1191 (2019) 76–84.
[94] I. Kazeminezhad, A. Sadollahkhani, J. Mater. Sci.: Mater. Electronics, 27 (2016) 4206–4215.
[95] X. Li, Y. Hou, Q. Zhao, L. Wang, J Colloid Interface Sci, 358 (2011) 102–108.
[96] M. I. A. A. Maksoud, G. S. El-Sayyad, A. M. El-Khawaga, M. Abd Elkodous, A. Abokhadra, M. A. Elsayed, M. Gobara, L.I. Soliman, H.H. El-Bahnasawy, A.H. Ashour, J. Hazard Mater, 3894 (2020) 123000.
[97] A. Eslami, A. Oghazyan, M. Sarafraz, Iran. J. Catal. ,8 (2018) 95-102.
[98] R. Comparelli, E. Fanizza, M. L. Curri, P. D. Cozzoli, Appl. Catal. B, 60 (2005) 1–11.
[99] G. K. Weldegebrieal, Inorg. Chem. Commun., 120 (2020) 108140.
[100] M. H. Habibi, M. K. Sardashti, J. Adv. Oxid. Tech., 12 (2009) 231–237.
[101] Y. Wang, Y. Yang, L. Xi, X. Zhang, M Jia, H. Xu, H. Wu, Mater. Lett., 180 (2016) 55–58.
[102] R. Singh, S. Dutta, Nano-Structures and Nano-Objects, 18 (2019) 100250.
[103] T. J. Whang, M. T. Hsieh, H. H. Chen, Appl. Surf Sci, 258 (2012) 2796–2801.
[104] A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Sustain Cities Soc, 27 (2016) 407–418.
[105] A. B. Patil, K. R. Patil, S. K. Pardeshi, J. Hazard Mater., 183 (2010) 315–323.
[106] V. Sanna, N. Pala, V. Alzari, D. Nuvoli, M. Carcelli, Mater. Lett., 162 (2016) 257–260.
[107] H. Li, M. X. Hao, H. R. Kang, L. Q. Chu, Int. J. Biol. Macromol, 181 (2021) 150–159.
[108] L. V Bora and R. K. Mewada, Renewable and Sustainable Energy Reviews, 76 (2017) 1393–1421.
[109] S. M. Lam, J. C. Sin, A. Z. Abdullah, A. R. Mohamed, Desalination Water Treat., 41 (2012) 131–169.
[110] J. Guo, C. Dong, J. Zhang, Y. Lan, Sep. Purif. Technol., 143 (2015) 27–31.
[111] K. M. Lee, C. W. Lai, K. S. Ngai, J. C. Juan, Water Res., 88 (2016) 428–448.
[112] H. Zeghioud, N. Khellaf, H. Djelal, A. Amrane, Chem. Eng. Commun., 6445 (2016) 1563–5201.
[113] R. Ebrahimi, A. Maleki, Y. Zandsalimi, R. Ghanbari, J. Indust. Eng. Chem., 73 (2019) 297–305.
[114] J. Miao, Z. Jia, H. B. Lu, D. Habibi, L. C. Zhang, J. Taiwan Inst. Chem. Eng., 45 (2014) 1636–1641.
[115] P. R. Shukla, S. Wang, H. M. Ang, M. O. Tadé, Sep. Purif. Technol., 70 (2010) 338–344.
[116] A. Lais, M. A. Gondal, M. A. Dastageer, F. F. Al-Adel, Int. J. Energy Res., 42 (2018) 2031–2049.
[117] A. Gholamhosseini, K. Nasouri, A. M. Shoushtari, F. Mirgoli, Fibers and Polymers, 21 (2020) 1704–1712.
[118] A. A. Yaqoob, N. H. B. M. Noor, A. Serrà, M. N. M. Ibrahim, Nanomaterials, 10 (2020) 1–26.
[119] R. Beura, R. Pachaiappan, T. Paramasivam, J. Physic. Chem. Solids, 148 (2020) 109689.
[120] M. K. Singha, A. Patra, Opt. Mater., 107 (2020) 110000.
[121] A. R. Khataee, M. Zarei, L. Moradkhannejhad, Desalination, 258 (2010) 112–119.
[122] A. R. Khataee, M. B. Kasiri, J. Mol. Catal. A Chem., 328 (2010) 8–26.
[123] K. Y. Foo, B. H. Hameed, Adv. Colloid Interface Sci., 159 (2010) 130–143.
[124] B. H. Hameed, A. T. M. Din, A. L. Ahmad, J. Hazard Mater., 141 (2007) 819–825.
[125] M. Hasanpour, M. Hatami, J. Mol. Liq., 309 (2020) 113094.
[126] A. Khatri, M. H. Peerzada, M. Mohsin, M. White, J. Clean. Prod., 87 (2015) 50–57.
[127] A. P. Shah, S. Jain, V. J. Mokale, N. G. Shimpi, J. Indust. Eng. Chem., 77 (2019) 154–163.
[128] F. Liu, Y. H. Leung, A. B. Djurišić, A. M. C. Ng, W. K. Chan, Journal of Physical Chemistry C,117 (2013) 12218–12228.
[129] R. Vinu, S. U. Akki, G. Madras, J. Hazard Mater, 176 (2010) 765–773.
[130] S. Senobari, A. Nezamzadeh-Ejhieh, J. Mol. Liq., 257 (2018) 173–183.
[131] Z. D. Li, H. L. Wang, X. N. Wei, X. Y. Liu, Y. F. Yang, W. F. Jiang, J. Alloy. Comp., 659 (2016) 240-247.
[132] S. Chowdhury, Y. Jiang, S. Muthukaruppan, R. Balasubramanian, Carbon N Y, 128 (2018) 237–248.
[133] F. F. Brites, V. S. Santana, N. R. C. Fernandes-Machado, Top. Catal., 54 (2011) 264–269.
[134] A. Noruozi, A. Nezamzadeh-Ejhieh, Chem. Phys. Lett., 752 (2020) 137587.
[135] S. Bhatia, N. Verma, Mater. Res. Bull., 95 (2017) 468–476.
[136] S. Demirci, T. Dikici, M. M. Tünçay, N. Kaya, Appl. Surf. Sci., 507 (2020) 145083.
[137] Z. Zaidi, S. I. Siddiqui, B. Fatima, S. A. Chaudhry, Mater. Res. Bull., 120 (2019) 110584.
[138] M. Rezaei, A. Nezamzadeh-Ejhieha, Int. J. Hydrogen Energy, 45 (2020) 24749–24764.
[139] M. H. Elsayed, T. M. Elmorsi, A. M. Abuelela, A. E. Hassan, A. Z. Alhakemy, M. F. Bakr, H-H. Chou, J. Taiwan Inst. Chem. Eng., 115 (2020) 187–197.
[140] I. N. Reddy, C. V. Reddy, M. Sreedhar, J. Shim, M. Cho, D. Kim, Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 240 (2019) 33–40.
[141] J. Chen, Y. Xiong, M. Duan, X. Li, J. Li., S. Fang, S. Qin, R. Zhang, Langmuir, 36 (2020) 520–533.
[142] M. S. Khan, P. P. Dhavan, B. L. Jadhav, N. G. Shimpi, Chemistry Select, 5 (2020) 12660–12671.
[143] M. Maruthupandy, P. Qin, T. Muneeswaran, G. Rajivgandhi, F. Quero, J. M. Song, Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 254 (2020) 114516.
[144] I. Ahmad, M. S. Akhtar, E. Ahmed, M. Ahmad, Sep. Purif. Technol.,245 (2020) 116892.
[145] T. N. Q. Trang, T. B. Phan, N. D. Nam, V. T. H. Thu, ACS Appl. Mater Interfaces, 12 (2020) 12195–12206.
[146] M. Ahmad, W. Rehman, M. M. Khan, M. T. Qureshi, A. Gul, S. Haq, R. Ullah, A. Rab, F Menaa, J. Environ. Chem. Eng., 9 (2021) 104725.
[147] N. R. Khalid, A. Hammad, M.B. Tahir, M. Rafique, T. Iqbal, G. Nabi, M.K. Hussain, Ceram. Int., 45 (2019) 21430–21435.
[148] M. H. Habibi, M. H. Rahmati, Spectrochim Acta A Mol Biomol Spectrosc, 137 (2015) 160–164.
[149] F. S. Hashim, A. F. Alkaim, S. M. Mahdi, A. H. Omran Alkhayatt, Composites Communications, 16 (2019) 111–116.
[150] Y. Liu, L. Sun, J. Wu, T. Fang, R. Cai, A. Wei, Mater Sci Eng B Solid State Mater Adv Technol, 194 (2015) 9–13.
[151] J. Lan, B. He, C. Haw, M. Gao, I. Khan, R. Zheng, S. Guo, J. Zhao, Z. Wang, S. Huang, S. Li, J. Kang, Appl. Surf. Sci., 529 (2020) 147023.
[152] G. K. Upadhyay, J. K. Rajput, T. K. Pathak, V. Kumar, L. P. Purohit, Vacuum, 160 (2019) 154–163.
[153] M. F. Sanad, A. E. Shalan, S. M. Bazid, S. M. Abdelbasir, J. Environ. Chem. Eng., 6 (2018) 3981–3990.
[154] M. Franco, O. Marin, N. C. Vega, L. Tereschuk, D. Comedi, Materials Latters, 311 (2022) 131634.
[155] D. Bharathi, D. Bharathi, J. G. T. Nandagopal, R. Rajamani, S. Pandit, D. Kumar, B. Pant, S. Pandey, P. K. Gupta, Mater. Lett., 311 (2022) 131637.
[156] Z. Habibollahi, M. Peyravi, S. Khalili, M. Jahanshahi, Mater Today Chem., 23 (2022) 100748.
[157] D. A, R. Yadav, S. P. C, Mater Today Proc., 48 (2022) 494–501.
[158] D. K. L. Harijan, S. Gupta, S. K. Ben, A. Srivastava, J. Singh, V. Chandra, Physica B Condens Matter, 627 (2021) 413567.
[159] S. Noreen, S. Zafar, I. Bibi, M. Amami, M.A.S. Raza, F.H. Alshammari, Z.M. Elqahtani, B.I. Basha, N. Alwada, A. Nazir, M.I. Khan, M. Iqbal, Ceram Int, 48 (2022) 12170-12183.
[160] X. Wang, M. Deng, Z. Zhao, Q. Zhang, Y. Wang, Mater Chem. Phys., 276 (2022) 125305.
[161] M. Le, H. Suo, G. Tang, H. Qiao, Z. Zhao, N. Martin, Mater Chem. Phys., 275 (2022) 125304.
[162] D. Zhang, X. Zuo, W. Gao, H. Huang, H. Zhang, T. Cong, S. Yang, J. Zhang, L. Pan, Mater Res. Bull., 148 (2022) 111677.
[163] I. J. Peter, E. Praveen, G. Vignesh, P. Nithiananthi, Mater Res. Express, 4 (2017) 0–18.
[164] S. Suwanboon, P. Amornpitoksuk, C. Randorn, Ceram Int., 45 (2019) 2111–2116.
[165] K. N. Abbas, N. Bidin, Appl. Surf. Sci., 394 (2017) 498–508.
[166] N. S. Portillo-Vélez, A. Hernández-Gordillo, M. Bizarro, Catal. Today, 287 (2017) 106–112.
[167] Y. Lin, H. Hu, Y. H. Hu, Appl. Surf. Sci., 502 (2020) 144202.
[168] M. Vossoughi, F. Ghanbari, A. Simchi, R. Shidpour, Appl. Catal. A Gen, 472 (2014) 198–204.
[169] M. Pudukudy, A. Hetieqa, Z. Yaakob, Appl. Surf. Sci., 319 (2014) 221–229.
[170] H. Vahdat Vasei, S. M. Masoudpanah, M. Adeli, M. R. Aboutalebi, M. Habibollahzadeh, Mater Res. Bull., 117 (2019) 72–77.
[171] J. Prince Richard, I. Kartharinal Punithavathy, S. Johnson Jeyakumar, M. Jothibas, P. Praveen, J. Mater. Sci.: Mater. Electronics, 28 (2017) 4025–4034.
[172] C. Tian, Q. Zhang, A. Wu, M. Jiang, B. Jiang, H. Fu, Chem. Commun., 48 (2012) 2858–2860.
[173] Y. Liu, Q. Zhang, M. Xu, H. Yuan, Y. Chen, J. Zhang, K. Luo, J. Zhang, B. You, Appl. Surf. Sci., 476 (2019) 632–640.
[174] R. E. Adam, G. Pozina, M. Willander, O. Nur, Photonics Nanostruct, 32 (2018) 11–18.
[175] M. Dhanalakshmi, K. Saravanakumar, S. L. Prabavathi, V. Muthuraj, Inorg. Chem. Commun., 111 (2020) 107601.
[176] R. D. Suryavanshi, S. V. Mohite, A. A. Bagade, S. K. Shaikh, J. B. Thorat, K. Y. Rajpure, Mate. Res. Bull., 101 (2018) 324-333.
[177] S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, M. H. Cho, Nanoscale, 5 (2013) 9238–9246.
[178] P. Dhandapani, A. A. Prakash, M. S. AlSalhi, S. Maruthamuthu, S. Devanesan, A. Rajasekar, Mater. Chem. And Phys., 243 (2020) 122619.
[179] M. Golmohammadi, M. Honarmand, S. Ghanbari, Spectrochim Acta A Mol Biomol Spectrosc, 229 (2020) 117961.
[180] C. Qian, J. Yin, J. Zhao, X. Li, S. Wang, Z. Bai, T. Jiao, Colloids Surf. A Physicochem Eng. Asp., 610 (2021) 125752.
[181] T. Sansenya, N. Masri, T. Chankhanittha, T. Senasu, J. Piriyanon, S. Mukdasai, S. Nanan, J. Physic. Chem. Solids, 160 (2022) 110353.
[182] K. P. Jyothi, S. Yesodharan, E. P. Yesodharan, Ultrason Sonochem,21 (2014) 1787-1796.
[183] S. G. Anju, S. Yesodharan, E. P. Yesodharan, Chem. Eng. J., 189–190 (2012) 84–93.
[184] F. A. Alharthi, A. A. Alghamdi, A. A. Alothman, Z. M. Almarhoon, M. F. Alsulaiman, N. Al-Zaqri, Crystals , 10 (2020) 441.
[185] M. Dehghani, H. Nadeem, V. S. Raghuwanshi, H. Mahdavi, M. M. B. Holl, W. J. Batchelor, ACS Appl. Nano Mater., 3 (2020) 10284–10295.
[186] X. Zhang, J. Qin, R. Hao, L. Wang, X. Shen, R. Yu, S. Limpanart, M. Ma, R. Liu, J. Physic. Chem. C, 119 (2015) 20544−20554.
[187] A. G. Acedo-Mendoza, A. Infantes-Molina, D. Vargas-Hernandez, C. A. Chavez-Sanchez, E. Rodríguez-Castellon, J. C. Tanori-Cordova, Mater. Sci. Sem. Process, 119 (2020) 105257.
[188] S. Sriram, K. C. Lalithambika, A. Thayumanavan, Optik, 139 (2017) 299–308.
[189] M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A. Z. Moshfegh, Thin Solid Films, 605 (2016) 2–19.
[190] X. Zhang, Y. Wang, F. Hou, H. Li, Y. Yang, X. Zhang, Y. Yang, Y. Wang, Appl. Surf. Sci., 391 (2017) 476–483.
[191] M. J. Kadhim, F. Allawi, M. A. Mahdi, S. N. Abaas, Iran. J. Mater. Sci. Eng., 19 (2022) 1–15.
[192] M. Bahrami, A. Nezamzadeh-Ejhieh, Mater. Sci. Sem. Process, 27 (2014) 833–840.
[193] M. J. Kadhim, Synthesis and Characterization of Metal oxide Nanostructures Photocatalyst for Environmental and Energy Applications, thesis of PhD, University of Basrah, College of Science, Physics of Department,2020.