Preparation and characterization of SnO2-BiVO4-CuO catalyst and kinetics of phenazopyridine photodegradation
الموضوعات : Iranian Journal of CatalysisAilin Yousefi 1 , Alireza Nezamzadeh-Ejhieh 2
1 - Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
2 - Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
الکلمات المفتاحية: Photodegradation, SnO2-BiVO4-CuO heterogeneous catalyst, Phenazopyridine,
ملخص المقالة :
Here, SnO2, BiVO4, and CuO nanoparticles (NPs) were hydrothermally synthesized and mixed in an agate mortar mechanically. The coupled ternary SnO2-BiVO4-CuO (SBC) catalyst and the individual NPs were then briefly characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), and diffuse reflectance spectroscopy (DRS). Average crystallite size of 25 nm was obtained from the XRD data based on the Scherrer formula. The absorption edge (λAE) values of 1095, 430, 558, and 636 nm, corresponding to the band gap (Eg) values of 1.13, 2.88, 2.22, and 1.95 eV, were respectively obtained for the as-synthesized CuO, SnO2, and BiVO4 NPs and the as-prepared ternary SBC catalyst based on DRS results. The PZP degradation% of 11, 15, 17, and 24% were obtained by the CuO, SnO2, BiVO4 NPs, and SBC catalyst (with the same moles of each component). But, when the moles of BiVO4 in the SBC were two times greater than the others, about 43% of PZP were removed. The k-value of 9.9 × 10-3 min-1 corresponding to the t1/2-value of 70 min was obtained by applying the Hinshelwood plot on the photodegradation results. Photodegradation experiments were carried out in pH 5, CPhP: 3.35 ppm, and catalyst dosage: 0.55 g L-1. Further, when the photodegraded solutions were subject to the COD experiment, the Hinshelwood plots showed a slope of 0.01 min-1 which corresponds to the t1/2-value of 69.3 min.
[1] Liuwei Wang, Deyi Hou, Yining Cao, Yong Sik Ok, Filip M.G. Tack, Jörg Rinklebe, David O'Connor, Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies, Environ. Inter. 134 (2020) 105281.
[2] Yang Wu, Chung-Yu Guan, Nicholas Griswold, Li-yuan Hou, Xin Fang, Anyi Hu, Zhi-qiang Hu, Chang-Ping Yu, Zero-valent iron-based technologies for removal of heavy metal(loid)s and organic pollutants from the aquatic environment: Recent advances and perspectives, J. Cleaner Production, 277 (2020) 123478.
[3] Sh. Ahmad Bhat, F. Zafar, A. Hossain Mondal, Abdul Kareem, A. Ullah Mirza, Sh. Khan, A. Mohammad, Qazi Mohd. Rizwanul Haq, N. Nishat, Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles, J. Iran. Chem. Soc. 17 (2020) 215–227.
[4] I. R. Segundo, E. Freitas, S. Landi Jr., Manuel F. M. Costa, Joaquim O. Carneiro, Smart, Photocatalytic and Self-Cleaning Asphalt Mixtures: A Literature Review, Coatings 9 (2019) 696 (1-22 pages) doi:10.3390/coatings9110696.
[5] P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, Vinod Kumar Gupta, A. Hosseini-Bandegharaei, Shilpi Agrawal, Ag3PO4 modified phosphorus and sulphur co-doped graphitic carbon nitride as a direct Z-scheme photocatalyst for 2, 4-dimethyl phenol degradation, J. Photochem. Photobiol. A: Chem. 374 (2019) 22–35.
[6] H. Karimi-Maleh, M. Shafieizadeh, M. A. Taher, F. Opoku, E. Muriithi Kiarii, P. P. Govender, S. Ranjbari, M. Rezapour, Y. Orooji, The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation, J. Mol. Liq. 298 (2020) 112040.
[7] Abhinandan Kumar, P. Raizada, A. Hosseini-Bandegharaei, Vijay Kumar Thakur,Van-Huy Nguyen, P. Singh, C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges, J. Mater. Chem. A 9 (2021) 111-153.
[8] H. Karimi-Maleh, B. Ganesh Kumar, S. Rajendran, J. Qin, S. Vadivel, D. Durgalakshmi, F. Gracia, M. Soto-Moscoso, Y. Orooji, F. Karimi, Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration, J. Mol. Liq. 314 (2020) 113588.
[9] A. Kumar, P. Raizada, P. Singh, R. V Saini, A. K Saini, A. Hosseini-Bandegharaei, Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification, Chem. Eng. J. 391 (2020) 123496.
[10] H. Karimi-Maleh, A. Ayati, S. Ghanbari, Y. Orooji, B. Tanhaei, F. Karimi, M. Alizadeh, J. Rouhi, L. Fu, M. Sillanpää, Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review, J. Mol. Liq. 329 (2021) 115062.
[11] H. Karimi-Maleh, S. Ranjbari, B. Tanhaei, A. Ayati, Y. Orooji, M. Alizadeh, F. Karimi, S. Salmanpour, J. Rouhi, M. Sillanpää, F. Sen, Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study, Environ. Res. 195 (2021) 110809.
[12] H. Karimi-Maleh, M. Lütfi Yola, N. Atar, Y. Orooji, F. Karimi, P. Senthil Kumar, J. Rouhi, M. Baghayeri, A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite, J. Colloid Interf. Sci. 592 (2021) 174–185.
[13] H. Karimi-Maleh, M. Alizadeh, Y. Orooji, F. Karimi, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, S. Rajendran, S. Rostamnia, L. Fu, F. Saberi-Movahed, S. Malekmohammadi, Guanine-Based DNA Biosensor Amplified with Pt/SWCNTs Nanocomposite as Analytical Tool for Nanomolar Determination of Daunorubicin as an Anticancer Drug: A Docking/Experimental Investigation, Ind. Eng. Chem. Res. 60 (2021) 816-823.
[14] Sh. Ahmad Bhat, F. Zafar, A. Hossain Mondal, Abdul Kareem, A. Ullah Mirza, Sh. Khan, A. Mohammad, Qazi Mohd. Rizwanul Haq, N. Nishat, Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles, J. Iran. Chem. Soc. 17 (2020) 215–227
[15] Dongfang Zhang, Jiaxun Wang, Visible-light-responsive bismuth oxybromide/graphite-like C3N4 hybrid material and its application in photocatalysis via internal electric field, J. Iran. Chem. Soc. 16 (2019) 827-839.
[16] N. Pourshirband, A. Nezamzadeh-Ejhieh, Seyed Nezamoddin Mirsattari, The coupled AgI/BiOI catalyst: Synthesis, brief characterization, and study of the kinetic of the EBT photodegradation, Chem. Phys. Lett. 761 (2020) 138090.
[17] A. Pourtaheri, A. Nezamzadeh-Ejhieh, Enhancement in photocatalytic activity of NiO by supporting onto an Iranian clinoptilolite nano-particles of aqueous solution of cefuroxime pharmaceutical capsule, Spectrochim. Acta Part A: Molec. Biomolec. Spect. 137 (2015) 338–344.
[18] S.P. Meshram, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, Facile synthesis of CuO nanomorphs and their morphology dependent sunlight driven photocatalytic properties, Chem. Eng. J. 204–206 (2012) 158–168.
[19] M. Karimi Shamsabadi, M. Behpour, Fabricated CuO–ZnO/nanozeolite X heterostructure with enhanced photocatalytic performance: mechanism investigation and degradation pathway, Mater. Sci. Eng. B 269 (2021) 115170.
[20] P. Eghbali, A. Hassani, B. Sündü, Ö. Metin, Strontium titanate nanocubes assembled on mesoporous graphitic carbon nitride (SrTiO3/mpg-C3N4): Preparation, characterization and catalytic performance. J. Mol. Liq. 290 (2019) 111208.
[21] A. Hassani, P. Eghbali, Ö. Metin,Sonocatalytic removal of methylene blue from water solution by cobalt ferrite/mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4) nanocomposites: response surface methodology approach,Environ. Sci. Poll. Res. 25 (2018) 32140-32155.
[22] R. Kumar, A. Sudhaik, P. Raizada, A. Hosseini-Bandegharaei, Vijay Kumar Thakurd, A. Saini, V. Saini, P. Singh, An overview on bismuth molybdate based photocatalytic systems: Controlled morphology and enhancement strategies for photocatalytic water purification, J. Environ. Chem. Eng. 8 (2020) 104291.
[23] Sudhaik, Anita, Pankaj Raizada, Saloni Thakur, Reena V. Saini, Adesh K. Saini, Pardeep Singh, Vijay Kumar Thakur, Van-Huy Nguyen, Aftab Aslam Parwaz Khan, and Abdullah M. Asiri, Synergistic photocatalytic mitigation of imidacloprid pesticide and antibacterial activity using carbon nanotube decorated phosphorus doped graphitic carbon nitride photocatalyst, J. Taiwan Institute Chem. Eng. 113 (2020) 142-154.
[24] Kumar, Abhinandan, P. Raizada, P. Singh, A. Hosseini-Bandegharaei, Vijay K. Thakur, Facile synthesis and extended visible light activity of oxygen and sulphur co-doped carbon nitride quantum dots modified Bi2MoO6 for phenol degradation, J. Photochem. Photobiol. A: Chem. 397 (2020) 112588.
[25] S. Dharmraj Khairnar, M. Rajendra Patil, V. Shankar Shrivastava, Hydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for the degradation of congo red and methylene blue, Iran. J. Catal. 8(2) (2018) 143-150.
[26] A. Hassani, M. Faraji, P. Eghbali, Facile fabrication of mpg-C3N4/Ag/ZnO nanowires/Zn photocatalyst plates for photodegradation of dye pollutant, J. Photochem. Photobiol. A: Chem. 400 (2020) 112665.
[27] A. Omidi, A. Habibi-Yangjeh, Microwave-assisted method for preparation of Sb-doped ZnO nanostructures and their photocatalytic activity, J. Iran. Chem. Soc. 11 (2014) 457–465.
[28] P. Raizada, Aftab Aslam Parwaz Khan, P. Singh, Construction of carbon nanotube mediated Fe doped graphitic carbon nitride and Ag3VO4 based Z-scheme heterojunction for H2O2 assisted 2, 4 dimethyl phenol photodegradation, Sep. Pur. Techn. 247 (2020) 116957.
[29] M. Bordbar, S. Jafari, A. Yeganeh-Faal, B. Khodadadi, Influence of different precursors and Mn doping concentrations on the structural, optical properties and photocatalytic activity of single-crystal manganese-doped ZnO, J. Iran. Chem. Soc. 14 (2017) 897–906.
[30] P. Shilpa, P. Raizada, V. Hasija, P. Singh, V. K. Thakur, Van-Huy Nguyen, Recent advances in photocatalytic multivariate metal organic framework (MOFs) based nanostructures toward renewable energy and the removal of environmental pollutants, Mater. Today Energy 19 (2020) 100589.
[31] M. Zebardast, A. Fallah Shojaei, Kh. Tabatabaeian, Enhanced removal of methylene blue dye by bimetallic nano-sized MOF-5s, Iran. J. Catal. 8(4) (2018) 297-309
[32] A Bagheri-Ghomi, V. Ashayeri, Photocatalytic efficiency of CuFe2O4 by supporting on clinoptilolite in the decolorization of acid red 206 aqueous solutions, Iran. J. Catal. 2(3) (2012) 135-140
[33] H. Derikvandi, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature, J. Hazard. Mater. 321 (2017) 629–638
[34] S. Dianat, Visible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite, Iran. J. Catal. 8(2) (2018) 121-132.
[35] K. Anil Isai, Vinod Shankar Shrivastava, Photocatalytic degradation of methyl orange using ZnO and Fe doped ZnO: A comparative study, Iran. J. Catal. 9(3) (2019) 259-268
[36] M.L. Maya-Treviño, J.L. Guzmán-Mar, L. Hinojosa-Reyes, A. Hernández-Ramírez, Synthesis and photocatalytic activity of ZnO-CuPc for methylene blue and potassium cyanide degradation, Mater. Sci. Semicond. Proc. 77 (2018) 74-82.
[37] A. Hassani, P. Eghbali, Ö. Metin,Sonocatalytic removal of methylene blue from water solution by cobalt ferrite/mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4) nanocomposites: response surface methodology approach,Environ. Sci. Poll. Res. 25 (2018) 32140-32155.
[38] Hassani, P. Eghbali, B. Kakavandi, K.-Y. A. Lin, F. Ghanbari. Acetaminophen removal from aqueous solutions through peroxymonosulfate activation by CoFe2O4/mpg-C3N4 nanocomposite: Insight into the performance and degradation kinetics. Environ. Techn. & Innovation, 20 (2020) 101127.
[39] A. Buthiyappan, Abdul R. Abdul Aziz, Wan Mohd Ashri Wan Daud, Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents, Rev. Chem. Eng. 32(1) (2015) 1-47
[40] Shirin Ghattavi, A. Nezamzadeh-Ejhieh, A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers, Composites Part B 183 (2020) 107712.
[41] Quanlong Xu, Liuyang Zhang, Jiaguo Yu, Swelm Wageh, Ahmed A. Al-Ghamdi, Mietek Jaroniec, Direct Z-scheme photocatalysts: Principles, synthesis and applications, Mater. Today 21 (2018) 1042-1063.
[42] Aftab Aslam Parwaz Khan, P. Singh, P. Raizada, Abdullah M. Asiri, Synthesis of magnetically separable Bi2O2CO3/carbon nanotube/ZnFe2O4 as Z-scheme heterojunction with enhanced photocatalytic activity for water purification, J. Sol-Gel Sci. Technol. 95(2) (2020) 408-422.
[43] N. Omrani, A. Nezamzadeh-Ejhieh, Focus on scavengers’ effects and GC-MASS analysis of photodegradation intermediates of sulfasalazine by Cu2O/CdS nanocomposite, Sep. Purification Technol. 235 (2020) 116228.
[44] S. Patial, P. Raizada, V. Hasija, P. Singh, V. Kumar Thakur, V.-H. Nguyen, Recent advances in photocatalytic multivariate metal organic frameworks-based nanostructures toward renewable energy and the removal of environmental pollutants, Mater. Today Energy 19 (2021) 100589.
[45] P. Singh, P. Shandilya, P. Raizada, A. Sudhaik, A. Rahmani-Sani, A. Hosseini-Bandegharaei, Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification, Arabian J. Chem. (2020) 13, 3498–3520.
[46] Sonu, V. Dutta, Sheetal Sharma, P. Raizada, A. Hosseini-Bandegharaei, V. K. Gupta, P. Singh, Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water, J. Saudi Chem.Soc. 23 (2019) 1119–1136.
[47] Yunfang Huang, Hui Xu, Dan Luo, Qiyao Guo, Yuezhu Zhao, Yu Fang, Yuelin Wei, Leqing Fan, Jihuai Wu, Visible light-driven flower-like Bi/BiOClxBr(1−x) heterojunction with excellent photocatalytic performance, J. Iran. Chem. Soc. 16 (2019) 2743–2754.
[48] H. Derikvandi, M. Vosough, A. Nezamzadeh-Ejhieh, A comprehensive study on the enhanced photocatlytic activity of a double-shell mesoporous plasmonic Cu@Cu2O/SiO2 as a visible-light driven nanophotocatalyst, Environ. Sci. Pollution Res. 27 (2020) 27582–27597.
[49] N. Jalili-Jahani, B. Hemmateenejad, M. Shamsipur, Gold-decorated Fe3O4 nanoparticles for efficient photocatalytic degradation of ampicillin: a chemometrics investigation, J. Iran. Chem. Soc. 17 (2020) 1173–1182.
[50] H. Derikvandi, M. Vosough, A. Nezamzadeh-Ejhieh, A novel double Ag@AgCl/Cu@Cu2O plasmonic nanostructure: Experimental design and LC-Mass detection of tetracycline degradation intermediates, Inter. J. Hydrogen Energy 46 (2021) 2049 -2064.
[51] K. Zhou, R. Wang, B. Xu, Y. Li, Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes, Nanotechnology 17 (2006) 3939-3943.
[52] K. Prashant B, K. Kailas H, Green synthesis and characterization of SnO2 and ZnO nanoparticles: study their electrical conductivity and gas sensing properties, der Chemic. Sinica. 7 (2016) 29-35.
[53] S. Selvarajan, A. Suganthi, M. Rajarajan, K. Arunprasath, Highly efficient BiVO4/WO3 nanocomposite towards superior photocatalytic performance, Powder Technol. 307 (2017) 203-212.
[54] S. Mortazavi, H. Aghaei, Make proper surfaces for immobilization of enzymes: Immobilization of lipase and α-amylase on modified Na-sepiolite, Int. J. Biol. Macromol. 164 (2020) 1-12.
[55] A. R. Massah, R. Javad Kalbasi, S. Kaviyani, Synthesis, characterization, and application of a manganese Schiff base complex containing heterogeneous hybrid catalyst, RSC Adv. 3 (2013) 12816-12825.
[56] A. Bhagwat, S. Sawant, B. Ankamwar, C. Mahajan, Synthesis of nanostructured tin oxide (SnO2) powders and thin films by sol-gel method, J. Nano- Electron. Phys. 7 (2015) 04037.
[57] G. Patil1, D. Kajale, V. Gaikwad1, G. Jain, Preparation and characterization of SnO2 nanoparticles by hydrothermal route, Int. Nano Lett. 2 (2012) 1-5.
[58] H. E. A. Mohamed, B. T. Sone, X. G. Fuku, M. S. Dhlamini, M. Maaza, Green synthesis of BiVO4 nanorods via aqueous extracts of callistemon viminalis, AIP Conference Proceedings 1962, 040004 (2018); doi: 10.1063/1.5035542.
[59] P. Brack, Jagdeep S. Sagu, T. A. Nirmal Peiris, Andrew McInnes, Mauro Senili, K. G. Upul Wijayantha, Frank Marken, Elena Selli, Aerosol-Assisted CVD of Bismuth Vanadate Thin Films and Their Photoelectrochemical Properties, Chem. Vap. Deposition 20 (2014) 1–5.
[60] R. Etefagh, E. Azhir, N. Shahtahmasebi, Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillusniger fungi, Scientia Iranica, 20 (2013) 1055-1058.
[61] V. Vellora, Thekkae Padil, M. Černík, Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application, Inter. J. Nanomedicine 8 (2013) 889–898.
[62] Sharma Kirti, P. Raizada, A. Hosseini-Bandegharaei, P. Thakur, R. Kumar, V. K. Thakur, Van-Huy Nguyen, P. Singh, Fabrication of efficient CuO/graphitic carbon nitride based heterogeneous photo-Fenton like catalyst for degradation of 2, 4 dimethyl phenol, Process Safety Environ. Protec. 142 (2020) 63-75.
[63] Solmaz Aghdasi, Mohammad Shokri, Photocatalytic degradation of ciprofloxacin in the presence of synthesized ZnO nanocatalyst: The effect of operational parameters, Iran. J. Catal. 6(5) (2016) 481-487.
[64] P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Göttinger Nachrichten Gesell. 2 (1918) 98-100.
[65] A. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev. 56(10) (1939) 978–982.
[66] Shokufeh Aghabeygi, R. Kia Kojoori, H. Vakili Azad, Sonosynthesis, characterization and photocatalytic degradation property of nanoZnO/zeoliteA, Iran. J. Catal. 6(3) (2016) 275-279.
[67] U. Holzwarth, N. Gibson, The Scherrer equation versus the 'Debye-Scherrer equation', Nature Nanotech 6 (2011) 534.
[68] F. T. Leitão Muniz, M. A. Ribeiro Miranda, C. Morilla dos Santos, J. Marcos Sasaki, The Scherrer equation and the dynamical theory of X‐ray diffraction, Cta Crystal. Section A: Fund. Adv. 72 (2016) 385-390.
[69] N. Lotfian, AmirAbbas Nourbakhsh, Seyed Nezamoddin Mirsattari, A. Saberi, Kenneth J.D. Mackenzie, A comparison of the effect of nanostructured MgCr2O4 and FeCr2O4 additions on the microstructure and mechanical properties of direct-bonded magnesia-chrome refractories, Ceramics Inter. 46 (2020) 747-754.
[70] N. Jeevanantham, O. N. Balasundaram, High-performance visible light photocatalytic activity of cobalt (Co) doped CdS nanoparticles by wet chemical route, J. Iran. Chem. Soc. 16 (2019) 243–251.
[71] M. Bordbar, Z. Sayban, A. Yeganeh-Faal, B. Khodadadi, Incorporation of Pb2+, Fe2+ and Cd2+ ions in ZnO nanocatalyst for photocatalytic activity, Iran. J. Catal. 8(2) (2018) 113-120.
[72] V. Taghvaei, A. Habibi-Yangjeh, M. Behboudnia, Simple and low temperature preparation and characterization of CdS nanoparticles as a highly efficient photocatalyst in presence of a low-cost ionic liquid, J. Iran. Chem. Soc. 7 (2010) S175–S186.
[73] R. Javad Kalbasi, A. R. Massah, F. Zamani, Alex D. Bain, Bob Berno, Metal (Co, Mn)-amine-functionalized mesoporous silica SBA-15:synthesis, characterization and catalytic properties in hydroxylation of benzene, J. Porous Mater. 18 (2011) 475–482.
[74] M. Khozeymeh Nezhad, H. Aghaei, Tosylated cloisite as a new heterofunctional carrier for covalent immobilization of lipase and its utilization for production of biodiesel from waste frying oil, Renew. Energy 164 (2021) 876-888.
[75] R. Javad Kalbasi, A. R. Massah, B. Daneshvarnejad, Preparation and characterization of bentonite/PS-SO3H nanocomposites as an efficient acid catalyst for the Biginelli reaction, Appl. Clay Sci. 55 (2012) 1–9.
[76] I. Matsuura, M. Imaizumi, M. Su Giyama, Method of kinetic analysis of photodegradation: Nifedipine in solutions, Chem. Pharm. Bull. 38 (1990) 1692-1696.
[77] M. Balakrishnan, R. John, Properties of sol-gel synthesized multiphase TiO2 (AB)-ZnO (ZW) semiconductor nanostructure: An effective catalyst for methylene blue dye degradation, Iran. J. Catal. 10(1) (2020) 1-16.
[78] N. Assi, M. S. Tehrani, P. Aberoomand Azar, Syed Waqif Husain, Microwave-assisted sol–gel synthesis of Fe2.9O4/ZnO core/shell nanoparticles using ethylene glycol and its use in photocatalytic degradation of 2-nitrophenol, J. Iran. Chem. Soc. 14 (2017) 221–232.
[79] N. Pourshirband, A. Nezamzadeh-Ejhieh, An efficient Z-scheme CdS/g-C3N4 nano catalyst in methyl orange photodegradation: Focus on the scavenging agent and mechanism, J. Mol. Liq. 335 (2021) 116543.
[80] V. Mirkhani, S. Tangestaninejad, M. Moghadam, M. H. Habibi, A. Rostami Vartooni, Photodegradation of aromatic amines by Ag-TiO2 photocatalyst, J. Iran. Chem. Soc. 6 (2009) 800–807.
[81] A. Mahmood, Xiao Wang, Xiaofeng Xie, Jing Sun, Degradation behavior of mixed and isolated aromatic ring containing VOCs: Langmuir-Hinshelwood kinetics, photodegradation, in-situ FTIR and DFT studies, J. Environ. Chem. Eng. 9 (2021) 105069.
[82] M. Falamarzi, E. Akbarzadeh, M. R. Gholami, Zeolitic imidazolate framework-derived Ag/C/ZnO for rapid reduction of organic pollutant, J. Iran. Chem. Soc. 16 (2019) 1105–1111.
[83] P. Raizada, J. Kumari, P. Shandilya, P. Singh, Kinetics of photocatalytic mineralization of oxytetracycline and ampicillin using activated carbon supported ZnO/ZnWO4 nanocomposite in simulated wastewater, Desal. Water Treat. 79 (2017) 204–213.
[84] F. Yousefi, A. Nezamzadeh-Ejhieh, Photodegradation of phenazopyridine in an aqueous solution by CdS-WO3 nanocomposite, Desal. Water Treat. 182 (2020) 299-308.
[85] Shirin Ghattavi, A. Nezamzadeh-Ejhieh, A brief study on the boosted photocatalytic activity of AgI/WO3/ZnO in the degradation of Methylene Blue under visible light irradiation, Desal. Water Treat.166 (2019) 92–104.