Magnetic ZnFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant
الموضوعات : Iranian Journal of CatalysisAli Ramazani 1 , Fariba Sadri 2 , Abdolhossain Massoudi 3 , Mehdi Khoobi 4 , Sang Woo Joo 5 , Leila Dolatyari 6 , Nahid Dayyani 7
1 - Department of Chemistry, University of Zanjan, P O Box 45195-313, Zanjan, Iran
2 - Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
3 - Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
4 - Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14176, Iran
5 - School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749,Republic of Korea
6 - Department of Chemistry, Zanjan Branch, Islamic Azad University, P O Box 49195-467, Zanjan, Iran
7 - Department of Chemistry, University of Zanjan, P O Box 45195-313, Zanjan, Iran
الکلمات المفتاحية: oxidation, Alcohols, zinc ferrite, Nanomagnetic catalyst, carbonyl compounds, Oxone,
ملخص المقالة :
Zinc ferrite (ZnFe2O4) nanoparticles were synthesized via the auto-combustion assisted sol-gel method of Zn2+ and Fe3+ ions (molar ratio 1:2) in ammonia solution. The prepared nanomagnetic catalyst was characterized by IR, XRD, SEM and ICP. The diameter of the ZnFe2O4 MNPs (63.7 nm) was determined by Debye-Scherre equation via their XRD pattern. Nanomagnetic ZnFe2O4 efficiently catalyzes oxidation of alcohols and gave the corresponding carbonyl-containing products in good yields. The reactions were carried out in an aqueous medium at r.t in the presence of oxone (potassium hydrogen monopersulfate) as an oxidant. In addition, the catalysts could be reused up to 5 runs without significant loss of activities.
[1] I.W.C.E. Arends, Angew. Chem. 118 (2006) 6398-6400.
[2] R.B. Nasir Baig, S.V. Rajender, Chem. Commun. 499 (2013) 752-770.
[3] D. Patel, J.Y. Moon, Y. Chang, T.J. Kim, G.H. Lee, Colloid Surf. A 313–314 (2008) 91-94.
[4] M. Zhao, L. Josephson, Y. Tang, R. Weissleder, Angew. Chem. Int. Ed. 42 (2003) 1375-1378.
[5] S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, Solid State Chem. 34 (2006) 237-247.
[6] P.D. Stevens, J. Fan, H.M.R. Gardimalla, M. Yen, Y. Gao, Org. Lett. 7 (2005) 2085-2088.
[7] Y. Jun, J. Choi, J. Cheon, Chem. Commun. 12 (2007) 1203-1214.
[8] W. Wu, Q. He, C. Jiang, Nanoscale Res. Lett. 3 (2008) 397-415.
[9] Z.H. Hua, R.S. Chen, C.L. Li, S.G. Yang, M. Lu, X.B. Gu, Y.W. Du, J. Alloys Compd. 427 (2007) 199-
203.
[10] S.A. Corr, Y.P. Rakovich, Y.K. Gunko, Nanoscale Res. Lett. 3 (2008) 87-104.
[11] Z. Lai, G. Xu, Y. Zheng, Nanoscale Res. Lett. 2 (2007) 40-43.
[12] N. Rezlescu, E. Rezlescu, F. Tudorache, P.D. Popa, Rom. Rep. Phys. 61 (2009) 223-234.
[13] J.A. Melero, R.V. Grieken, G. Morales, Chem. Rev. 106 (2006) 3790-3812.
[14] D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. Int. Ed. 44 (2005) 7852-7872.
[15] S. Morent, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 14 (2004) 2161-2175.
[16] X. Wang, D.Z. Wang, Tetrahedron 67 (2011) 3406-3411.
[17] B.M. Trost, I. Fleming, Eds. Comprehensive Organic Synthesis, Pergamon Press, New York, 1991.
[18] S. Kobayashi, Adv. Synth. Catal. 344 (2002) 221-237.
[19] H. Ji, T. Wang, M. Zhang, Y. She, L. Wang, Appl. Catal. A 282 (2005) 25-30.
[20] A. A. Thant, S. Srimala, P. Kaung, M. Itoh, O. Radzali, M. N. Ahmad Fauzi, J. Aust. Ceram. Soc. 46 (2010) 11-14.
[21] I.V. Kasi Viswanath, Y.L.N. Murthy, K. Rao Tata, R. Singh, Int. J. Chem. Sci. 11 (2013) 64-72 .
[22] C. Ladole, Int. J. Chem. Sci. 10 (2012) 1230-1234.
[23] Y. Ahn, E. J. Choi, J. Korean Phys. Soc. 41 (2002) 123-128.
[24] F. Shi, M, Kin Tse, M.M. Pohl, J. Radnik, A. Bruckner, S. Zhang, M. Beller, J. Mol. Catal. A: Chem. 292 (2008) 28–35.
[25] V. R. Choudhary, D.K. Dumbre, Catal. Commun. 13 (2011) 82–86.
[26] X. Wang, H. Kawanami, S.E. Dapurkar, N.S. Venkataramanan, M. Chatterjee, T. Yokoyama, Y. Ikushima, Appl. Catal. A 349 (2008) 86-90.