Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles as a reusable efficient nanocatalyst for synthesis of gem-dihydroperoxides and 1,2,4,5-tetraoxanes
الموضوعات : Iranian Journal of CatalysisKaveh Khosravi 1 , Ali Reza Karimi 2 , Shirin Naserifar 3
1 - Faculty of Science, Department of Chemistry, Arak University, Arak 38156-8-8349, Iran.
2 - Faculty of Science, Department of Chemistry, Arak University, Arak 38156-8-8349, Iran.
3 - Faculty of Science, Department of Chemistry, Arak University, Arak 38156-8-8349, Iran.
الکلمات المفتاحية: Hydrogen peroxide, Aldehydes, Ketones, Gem-dihydroperoxide, 1, 2, 4, 5-tetraoxanes, Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles,
ملخص المقالة :
Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles (ADSA-MNPs) were used as effective, low-cost and reusable solid heterogeneous nanomagnetic catalysts for conversion of aldehydes and ketones to corresponding gem-dihydroperoxides and 1,2,4,5-tetraoxanes using aqueous hydrogen peroxide (30% w/w in H2O) at room temperature. These compounds are important key intermediates in preparation of anti-malaria drugs. The reactions proceeded in high rates and excellent yields. Since the catalyst was separated facilely from the reaction mixture by an external magnet and was reused six times without considerable loss of catalytic activity, this methodology is environmentally friendly. It is notable that it is the first report on using a nanocatalyst in the synthesis of gem-dihydroperoxides and 1,2,4,5-tetraoxanes from aldehydes and ketones up to now.
[1] K. Zmitek, M. Zupan, J. Iskra, Org. Biomol. Chem. 5 (2007) 3895-3908.
[2] J. Iskra, D. Bonnet-Delpon, J.P. Begue, Tetrahedron Lett. 44 (2003) 6309-6312.
[3] Y.Q. Tang, Y.X. Dong, J.L. Vennerstrom, Med. Res. Rev. 24 (2004) 425-448.
[4] Y. Dong, Mini-Rev. Med. Chem. 2 (2002) 113-123.
[5] A.O Terentev, A.V. Kutkin, Z.A. Starikova, M.Y. Antipin, Y.N. Ogibin, G.I. Nikishina, Synthesis 14 (2004) 2356-2366.
[6] R. Amewu, A.V. Stachulski, S.A. Ward, N.G. Berry, P.G. Bray, J. Davies, G. Labat, L. Vivas, P.M. O’Neill, Org. Biomol. Chem. 4 (2006) 4431-4436.
[7] A.O. Terent’ev, M.M. Platonov, A.I. Tursina, V.V. Chernyshev, G.I. Nikishin, J. Org. Chem. 73 (2008) 3169-3174.
[8] P. Ghorai, P.H. Dussault, C. Hu, Org. Lett. 10 (2008) 2401-2404.
[9] Q. Zhang, Y. Li, Y.K. Wu, Chin. J. Chem. 25 (2007) 1304-1308.
[10] Y. Hamada, H. Tokuhara, A. Masuyama, M. Nojima, H.S. Kim, K. Ono, N. Ogura, Y. Wataya, J. Med. Chem. 45 (2002) 1374-1378.
[11] H.S. Kim, Y. Nagai, K. Ono, K. Begum, Y. Wataya, Y. Hamada, K. Tsuchiya, A. Masuyama, M. Nojima, K.J. McCullough, J. Med. Chem. 44 (2001) 2357-2361.
[12] A. Masuyama, J.M. Wu, M. Nojima, H.S. Kim, Y. Wataya, Mini-Rev. Med. Chem. 5 (2005) 1035-1043.
[13] H. Hansma, A. Schroeder, AKZO N.V. Belg. Patent, (1978) 868681.
[14] D. Azarifar, K. Khosravi, Z. Najminejad, J. Iran. Chem. Soc. 10 (2013) 979-983.
[15] D. Azarifar, K. Khosravi, Eur. J. Chem. 1 (2010) 15-19.
[16] J.P. Selvam, V. Suresh, K. Rajesh, D. Chanti Babu, N. Suryakiran, Y. Venkateswarlu, Tetrahedron Lett. 49 (2008) 3463-3465.
[17] K. Jakka, J. Liu, C.G. Zhao, Tetrahedron Lett. 48 (2007) 1395-1398.
[18] D. Aarifar, K. Khosravi, Synlett 18 (2010) 2755-2758.
[19] A. Bunge, H.J. Hamann, E. McCalmont, J. Liebscher, Tetrahedron Lett. 50 (2009) 4629-4632.
[20] K. Khosravi, Res. Chem. Intermed. 41 (2015) 5253-5260.
[21] (a) D. Azarifar, M. Golbaghi, P. Pirveisian, Z. Najminejad, J. Adv. Chem. 10 (2014) 3088-3096. (b) D. Azarifar, S.M. Khatami, Z. Najminejad, J. Iran. Chem. Soc. 11 (2014) 587-592. (c) D. Azarifar, K. Khosravi, Z. Najminejad, Kh. Soleimani, Heterocycles 81 (2010) 2855-2863.
[22] C.W. Jefford, W. Li, A. Jaber, J. Boukouvalas, Synth. Commun. 20 (1990) 2589-2596.
[23] A.O. Terent’ev, A.V. Kutkin, N.A. Troizky, Y.N. Ogibin, G.I. Nikishin, Synthesis 13 (2005) 2215-2219.
[24] T. Ito, T. Tokuyasu, A. Masuyama, M. Nojima, K.J. McCullough, Tetrahedron 59 (2003) 525-536.
[25] K. Khosravi, Cogent Chem. 1 (2015) 1-9.
[26] K. Zmitek, K. Zupan, S. Stavber, J. Iskra, J. Org. Chem. 72 (2007) 6534-6540.
[27] K. Zmitek, K. Zupan, S. Stavber, J. Iskra, Org. Lett. 8 (2006) 2491-2494.
[28] B. Das, B. Veeranjaneyulu, M. Krishnaiah, B. Veeranjaneyulu, B. Ravikanth, Tetrahedron Lett. 48 (2007) 6286-6289.
[29] A. Bunge, H.J. Hamann, J. Liebscher, Tetrahedron Lett. 50 (2009) 524-526.
[30] B. Das, B. Veeranjaneyulu, M. Krishnaiah, P. Balasubramanyam, J. Mol. Catal. A: Chem. 284 (2008) 116-119.
[31] P. Ghorai, P. H. Dussault, Org. Lett. 10 (2008) 4577-4579.
[32] Y. Li, H.D. Hao, Q. Zhang, Y. Wu, Org. Lett. 11 (2009) 1615-1618.
[33] K.V. Sashidhara, S.R. Avula, L. R. Singh, G.R. Palnati, Tetrahedron Lett. 53 (2012) 4880-4884.
[34] R.S. Varma, Sustainable Chem. Processes 2 (2014) 1-11.
[35] (a) K. Khosravi, F. Pirbodaghi, S. Kazemi, A. Asgari, J. Iran. Chem. Soc. 12 (2015) 1333-1337. (b) K. Khosravi, A. Mobinikhaledi, S. Kazemi, D. Azarifar, P. Rahmani, Iran. J. Catal. 4 (2014) 25-31. (c) A. Mobinikhaledi, K. Khosravi, S. Kazemi, Iran. J. Catal. 5 (2015) 155-160.
[36] A.R. Karimi, Z. Eftekhari, M. Karimi, Z. Dalirnasab, Synthesis 46 (2014) 3180-3184.
[37] P. Ghorai, P.H. Dussault, Org. Lett. 11 (2009) 213-216.
[38] K. Khosravi, A. Asgari, J. Adv. Chem. 11 (2015) 3381-3390.
[39] D. Azarifar, B. Mahmoudi, J. Iran. Chem. Soc. 13 (2016) 645-651.
[40] K. Tsukimura, S. Sasaki, N. Kimizuka, Jpn. J. Appl. Phys. 36 (1997) 3609-3612.