Efficient synthesis of trisphenols using reduced sulfonated graphene nanocatalyst under solvent free conditions
الموضوعات : Iranian Journal of CatalysisSamaneh Behravesh 1 , Reza Fareghi-Alamdari 2 , Rashid Badri 3
1 - Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.|
Department of Chemistry, Science and Research Branch, Islamic Azad University, Iran.
2 - Department of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran 167653454, I.R. Iran.
3 - Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.|
Department of Chemistry, Science and Research Branch, Islamic Azad University, Iran.
الکلمات المفتاحية: Solvent-free conditions, 2, Trisphenol, 6-bis(hydroxymethyl) phenols, Sulfonated reduced graphene oxide,
ملخص المقالة :
This study reports a new methodology for the efficient synthesis of trisphenol compounds using the reaction of 2,6-bis(hydroxymethyl) phenols with phenols under heterogeneous conditions. A sulfonated reduced graphene oxide (RGO-SO3H) nanocatalyst was used to promote the reaction under solvent-free conditions. A range of trisphenol compounds were produced in the presence of this catalyst system in good to excellent yields. In the presence of this catalyst system, a less amount of phenol is required, which improves the environment through its capability in synthesis of trisphenols. The RGO-SO3H catalyst was reusable at least for 8 times in this process without a significant decrease in its catalytic activity.
[1] A. Ford, H. Miel, A. Ring, C.N. Slattery, A.R. Maguire, M.A. McKervey, Chem. Rev. 115 (2015) 9981-10080.
[2] S.V. Ley, I.R. Baxendale, Nat. Rev. Drug Discov. 1 (2002) 573-586.
[3] C.O. Kappe, Angew. Chem. Int. Ed. 43 (2004) 6250-6284.
[4] S.M. George, Chem. Rev. 95 (1995) 475-476.
[5] P. MacLellan, Nat. Chem. 5 (2013) 896-897.
[6] E. Giamello, Nat. Chem. 4 (2012) 869-870.
[7] F. Sua, Y. Guo, Green Chem. 16 (2014) 2934-2957.
[8] K. Wilson, J. H. Clark, Pure Appl. Chem. 72 (2000) 1313-1319.
[9] R. Skoda-Földes, Molecules 19 (2014) 8840-8884.
[10] Y.C. Sharma, B. Singh, J. Korstad, Biofuels, Bioprod. Bioref. 5 (2011) 69-92.
[11] D. W. Lee, K. Y. Lee, Catal. Surv. Asia 18 (2014) 55-74.
[12] B. Garg, T. Bisht, Y.C. Ling, Molecules 19 (2014) 14582-14614.
[13] S. Kang, J. Ye, J. Chang, Int. Rev. Chem. Eng. 5 (2013) 133-144.
[14] P.T. Yin, S. Shah, M. Chhowalla, K.B. Lee, Chem. Rev. 115 (2015) 2483-2531.
[15] H.Y. Mao, S. Laurent, W. Chen, O. Akhavan, M. Imani, A.A. Ashkarran, M. Mahmoudi, Chem. Rev. 113 (2013) 3407-3424.
[16] Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 41 (2012) 782-796.
[17] Y. Liu, X. Dong, P. Chen, Chem. Soc. Rev. 41 (2012) 2283-2307.
[18] S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Chem. Rev. 114 (2014) 6179-6212.
[19] X.K. Kong, C.L. Chen, Q.W. Chen, Chem. Soc. Rev. 43 (2014) 2841-2857.
[20] H. Naeimi, M. Golestanzadeh, RSC Adv. 4 (2014) 56475-56488.
[21] H. Naeimi, M. Golestanzadeh, New J. Chem. 39 (2015) 2697-2710.
[22] R. Fareghi-Alamdari, M.Golestanzadeh, N. Zekri, Z. Mavedatpoor, J. Iranian Chem. Soc. 12 (2015) 537-549.
[23] R. Fareghi-Alamdari, F. G. Zamani, N. Zekri, J. Serbian Chem. Soc. 79 (2014) 1337-1346.
[24] R. Fareghi-Alamdari, M. Golestanzadeh, F. Agend, N. Zekri, C.R. Chim. 16 (2013) 878-882.
[25] R. Fareghi-Alamdari, M. Golestanzadeh, F. Agend, N. Zekri, J. Chem. Sci. 125 (2013) 1185-1195.
[26] R. Fareghi-Alamdari, M. Golestanzadeh, F. Agend, N. Zekri, Canadian J. Chem. 91 (2013) 982-991.
[27] J.R. Hwu, A.A. Moshfegh, S.C. Tsay, C.C. Lin, W.N. Tseng, A. Azaripour, H. Mottaghian, G.H. Hakimelahi, J. Med. Chem. 40 (1997) 3434-3441.
[28] G.H. Hakimelahi, A.A. Moshfegh, Helv.Chim. Acta. 64 (1981) 599-609.
[29] A.A. Moshfegh, B. Mazandarani, A. Nahid, G.H. Hakimelahi, Helv. Chim. Acta 65 (1982) 1229-1232.
[30] V. Gopalsamuthiram, W.D. Wulff, J. Am. Chem. Soc. 126 (2004) 13936-13937.
[31] A. Saitoh, Y. Osato, U. Kazunori. U.S. Patent (2006) 6998182 B2.
[32] R. B. Durairaj, Resorcinol: Chemistry, technology and applications. Berlin Heidelberg: Springer-Verlag, 2005, pp. 717–32.
[33] R. Fareghi-Alamdari, A. Khalafi-Nezhad, N. Zekri, Synthesis 46 (2014) 887-892.
[34] J. S. Rodia, J. Org. Chem. 26 (1961) 2966-2969.
[35] A. Khalafi-Nezhad, M. N.Soltani Rad, G.H. Hakimelahi, Helv. Chim. Acta 86 (2003) 2396-2403.
[36] A. Khalafi-Nezhad, A. Parhami, R. Bargebid, S. Molazade, A. Zare, H. Foroughi, Mol. Diversity 15 (2011) 373-390.
[37] H.M. Foster, D.W. Hein, J. Org. Chem. 26 (1961) 2539-2541.
[38] S. Rostamizadeh, N. Zekri, Iran. J. Catal. 4 (2014) 253-260.
[39] S. Rostamizadeh, N. Zekri, Polycycl. Aromat. Comp. 2015, doi: 10.1080/10406638.2014.980435.
[40] W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339-1339.
[41] A. Khalafi-Nezhad, H.O. Foroughi, M.M. Doroodmand, F. Panahi, J. Mater. Chem. 21 (2011) 12842-12851.
[42] E.J. McGarry, B.A. Forsyth, US Patent (1981) 4282390.