Fluidized bed photoreactor for the removal of acetaminophen and pyridine using Al-doped TiO2 supported on alumina
الموضوعات : Iranian Journal of CatalysisCarlos Montalvo 1 , Ruby Sheila Gines 2 , Denis Cantu 3 , Alejandro Ruiz 4 , Claudia Aguilar 5 , Isai Perez 6 , Rosa Maria Ceron 7
1 - Faculty of Chemistry, Autonomous University of Carmen, Carmen City, Campeche, México.
2 - Orizaba Technological Institute, Division of Graduate Studies and Research. Orizaba, Veracruz, México.
3 - Orizaba Technological Institute, Division of Graduate Studies and Research. Orizaba, Veracruz, México.
4 - Faculty of Chemistry, Autonomous University of Carmen, Carmen City, Campeche, México.
5 - Faculty of Chemistry, Autonomous University of Carmen, Carmen City, Campeche, México.
6 - Faculty of Chemistry, Autonomous University of Carmen, Carmen City, Campeche, México.
7 - Faculty of Chemistry, Autonomous University of Carmen, Carmen City, Campeche, México.
الکلمات المفتاحية: Acetaminophen, Photodegradation, Pyridine, Fluidized bed reactor,
ملخص المقالة :
In this investigation, a fluidized bed photocatalytic reaction system was designed to eliminate emerging contaminants: acetaminophen and pyridine in water. Titanium dioxide (TiO2) doped with aluminum (Al3+) using the photo-deposition technique was used as a catalyst and supported on alumina beads (Al2O3). The catalyst´s doping was carried out by photo deposition with aluminum particles. The reactor, which is a quartz vessel with a capacity of 500 mL, where aluminum pearl, was previously impregnated with titanium oxide and calcined at 550 °C. The reactor feeding was carried out using a pump at a flow of 0.5 L/min; two lamps of UV light with 365 nm were used. The synthesized catalyst was characterized through Energy-dispersive X-ray analysis (EDX), Transmission Electron Microscopy (TEM), and X-ray diffraction (XRD) techniques, showing adequate impregnation of aluminum in the formed compound. Photoactivity analysis of the catalyst was performed at different contaminant concentrations, from 5-40 ppm for acetaminophen and 5-60 ppm for pyridine. Mineralization of more than 85% acetaminophen and 70 % pyridine was achieved after 300 min of UV illumination. The results demonstrate that using this photocatalytic arrangement as a decontamination technique for the pollutants such as acetaminophen and pyridine is feasible.
[1] M. Rajput, B. Mishra, Biocatal. Agric. Biotechnol. 17 (2019) 32-35.
[2] V. Bernal, L. Giraldo, P. J. Moreno, Rev. Colomb. Quim. 47 (2018) 54-62.
[3] EPA. United States Environmental Protection Agency: Paracetamol.(2021). https://sor.epa.gov/sor_internet/registry/substreg/searchandretrieve/advancedsearch/externalSearch.do?p_type=CASNO&p_value=103-90-2#.
[4] U.S. Food and Drug Administration. Acetaminophen Information. (2017). https://www.fda.gov/drugs/information-drug-class/acetaminophen-information. Revised March 5, 2021.
[5] C. Tejada, E. Quiñonez, M. Peña, Revista Facultad de ciencias básicas. 10 (2014) 80-101.
[6] Z.V. Robledo, M. M. Velázquez, S. J. Montañez, E. J. Pimentel, C. A. Vallejo, C. M. López, G. J. Venegas, Rev. Int. Contam. Ambient. 33 (2017) 221-235.
[7] O. A. Zalat, M. A. Elsayed, J. Environ. Chem. Eng. 1 (2013) 137-143
[8] E. Leyva, C. Montalvo, E. Moctezuma, S. Leyva. J. Ceramic Process. Res. 9 (2008) 455-462.
[9] Q. Lu, C. Zhang, W. Wang, B. Yuan, Y. Zhang, B. Rittmann. Sci. Total Environ. 654 (2019) 473-479.
[10] H. Vo, G. Le, T. Niguyen, T. Buin, X. Niguyen, E. Rene, T. Vo, N. Cao, R. Mohan, Chem. 236 (2019)124-134
[11] V. Gosu, P. Sikarwar, V. Subbaramaiah, J. Environ. Chem. Engin. 6 (2018) 1000-1007.
[12] L. Chu, S. Yu, J. Wang, Radiat. Phys. Chem. 144 (2018) 322-328.
[13] S. Malato, L. P. Fernández, M. I. Maldonado, J. Blanco, W. Gernjak, Catal. Today. 147 (2009) 1-59.
[14] P. R. Gines, R.E. Oropeza, R. C. Montalvo, L. D. Cantú, Rev. Mex. Ing. Quim. 19 (2020) 653-665.
[15] R. Camposeco, S. Castillo, G.V. Rodríguez, R. M. Hinojosa, A.I. Medina, C. I. Mejia, J. Photochem. Photobiol. A. 353 (2018) 114-121.
[16] L. F. Garces, M. L. Hernadez, Gest. Ambient 16 (2008) 1-12.
[17] S. Sajjadifar, I. Amini, M. Karimian. Iran. J. Catal., 11 (2021) 59-67.
[18] H. Pouretedal, M. Fallahgar, F. Pourhasan, M. Nasiri. Iran. J. Catal., 7, (2017) 317-326.
[19] H. Derikvandi, M. Vosough, A. Nezamzadeh-Ejhieh, Environ. Sci. Pollution Res. 27 (2020) 27582–27597.
[20] H. Derikvandi, M. Vosough, A. Nezamzadeh-Ejhieh, Inter. J. Hydrogen Energy. 46 (2021) 2049-2064.
[21] T. Zhang, M. Xu, J. Li, Catal. Today. 376 (2021) 162–167.
[22] S. I. Ahmad, H. Hamoudi, J. Ponraj, K. M. Youssef, Carbon. 178 (2021) 657-665.
[23] A. Ziashahabi, R. Poursalehi, Procedia Materials Sci. 11 (2015) 434-437.
[24] S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, V. Murugesan, J. Photochem. Photobio. A: Chem. 148 (2002) 153–159.
[25] L. Lecheng, P.C. Hiu, H. Xijun, Y. Po-Lock, Ind. Eng. Chem. Res. 38 (1999) 3381-3385.
[26] S. Hira, H. Hui, M. Yusuf, K. Park, Catal. Commun. 141 (2020) 1-11.
[27] E. Mosquera, N. Rosas, A. Debut, V.H. Guerrero, Rev. Politécnica. 36 (2015) 7-14.
[28] D. Wodka, E. Bielanska, R. Socha, M. Elzbieciak, J. Gurgul, P. Nowak, P. Warszynki, O. Kumariki, Appl. Mater. Interfaces. 2 (2010) 1945-1953.
[29] V. Subramanian, E. Wolf, P. Kamat, Am. Chem. Soc. 126 (2004) 4943–4950.
[30] C. Aguilar, C. Montalvo, B. Zermeño, R. Cerón, J. Cerón, F. Anguebes, M. Ramírez, Int. J. Environ. Sci. Technol. 16 (2019) 843–852.
[31] V. Loddo, M. Bellardita, G. Camera, F. Parrino, L. Palmisano, Advanced Oxidation Process. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier: Palermo, Italy, 2018.
[32] H. Calderón, Rev. Interdis. Nanocien. Nanotecn. 13 (2020) 133-156.
[33] M. A. Vargas, Y.H. Ochoa, Y. Ortegón, P. Mosquera, J. E. Rodríguez, R. J. Camargo, Ing. Desarrollo. 29 (2011) 186-201.
[34] Y. Ochoa, Y. Ortegón, P.J. Rodríguez, Rev. Fac. Ing. Univ. Antioquia. 2010 (2010) 29-40
[35] E. Moctezuma, H. Zamarripa, E. Leyva, Rev. Int. Contam. Ambient. 19 (2003) 117-125
[36] C. Fotiadis, N.P. Xekoukoulotakis, D. Mantzavinos, Catal. Today. 124 (2007) 247–253.
[37] S. Senobari, A. Nezamzadeh, Spectroch. Acta Part A: Mol. Bio. Spectros. 196 (2018) 334–343.
[38] A. Nezamzadeh, Z. Salimi, Desalination. 280 (2011) 281–287.
[39] A. Kumar and G. Pandey, Mat. Sci. Ing. Inter. J. 1 (2017) 106-114.
[40] S. Ege, Química orgánica. Estructura y reactividad. First ed., Reverté, México, 2000.
[41] M. Mehrali-Afjania, A. Nezamzadeh, H. Aghaei, Chem. Phys. Lett. 759 (2020) 137873-137889.
[42] A. Nezamzadeh, M. Khorsandi, J. Hazard. Mater. 176 (2010) 629–637.
[43] N. Arabpour, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Proces. 31 (2015) 684–692.
[44] A. Yousefi, A. Nezamzadeh-Ejhieh, Irán. J. Catal. 11 (2021) 247-259.
[45] B. Manikandan, K. R. Murali and R. John, Irán. J. Catal. 11 (2021) 1-11.
[46] S. Salmanderis, A. Nezamzadeh, Desal. Water Treat. 197 (2020) 200-212.
[47] H. S. Fogler, Elements of Chemical Reaction Engineering, second ed., Prentice-Hall, 2000.
[48] R. S. Dassanayake, E. Rajakaruna, N. Abidi, J. Appl. Polym. Sci. 135 (2017) 45908-45922.
[49] Y. Zeng, Y. Zhan, R. Xie, K. Hu, J. Cao, D. Lei, B. Liu, M. He, H. Huang, Chemosphere. 244 (2020) 12567-12579.
[50] Y. Zhai, W. Feng, Q. Wang, X. Ning, Catal. Commun. 58 (2015) 103–107.
[51] J. Chau, C. Lai, B. Leo, J. Juan, M. Johan, Catal. Commun. 163 (2022) 384-396.
[52] B. Manikandan, R. John, Iran, J. Catal. 10 (2020) 1-16.