Fe-MCM-22 catalyzed multicomponent synthesis of dihydropyrano [2,3-c] pyrazole derivatives
الموضوعات : Iranian Journal of CatalysisRameshwar Magar 1 , Ganesh Pawar 2 , Sachin Gadekar 3 , Machhindra Lande 4
1 - Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004, India.
2 - Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004, India.
3 - Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004, India.
4 - Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004, India.
الکلمات المفتاحية: Heterogeneous catalyst, Fe-MCM-22 zeolite, Multicomponent synthesis, Dihydropyrano [2, 3-c] pyrazoles,
ملخص المقالة :
The Fe-MCM-22 zeolite was found to be an efficient solid heterogeneous catalyst for synthesis of dihydropyrano [2,3-c] pyrazoles via one pot four component reaction of ethyl acetoacetate, hydrazine hydrate, aromatic aldehyde and malononitrile in aqueous alcohol. The catalyst was synthesized by hydrothermal method under autogenous pressure and modified by Fe (III) ion exchange. The prepared catalyst was characterized by X-ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive spectroscopy (SEM-EDS), Fourier Transform Infrared Spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) measurement technique. This ecofriendly protocol provides several advantages such as use of an inexpensive catalyst, short reaction time, mild reaction condition, simple work-up, good to excellent yield and reusability of the catalyst.
[1] K. Niknam, N. Borazjani, R. Rashidian, A. Jamali, Chin. J. Catal. 34 (2013) 2245-2254.
[2] A. Domling, I. Ugi, Angew. Chem. Int. Ed. 39 (2009) 3168-3210.
[3] C.O. Kappe, Acc. Chem. Res. 33 (2000) 879-888.
[4] J. Zhu, H. Bienayme, Multicomponent Reaction Weinheim, Wiley-VCH, 2005
[5] A.J. Amali, R.K. Rana, Green Chem. 11 (2009) 1781-1786.
[6] H. Junek, H. Aigner, Chem. Ber. 106 (1973) 914-921.
[7] H. Wamhoff, E. Kroth, K. Strauch, Synthesis 11 (1993) 1129-1132.
[8] G. Tacconi, G. Gatti, G. Desimoni, J. Prakt. Chem. 322 (1980) 831-834.
[9] L.G. Sharanina, V.P. Marshtupa, Y.A. Sharanin, Khim, Geterotsikl. Soedin. 10 (1980) 1420-1424.
[10] Y.A. Sharanin, L.G. Sharanina, V.V. Puzanova, Zh. Org. Khim. 19 (1983) 2609-2615.
[11] E.S. El-Tamany, F.A. El-Shahed, B.H. Mohamed, J. Serb. Chem. Soc. 64 (1999) 9-18.
[12] J.L. Wang, D. Liu, Z.J. Zheng, S. Shan, X. Han, S.M. Srinivasula, C.M. Croce, E.S. Alnemri, Z. Huang, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 7124-7129.
[13] M.E. Zaki, H.A. Soliman, O.A. Hiekal, A.E. Rashad, Z. Naturforsch. C 61 (2006) 1-5.
[14] S.C. Kuo, L.J. Huang, H. Nakamura, J. Med. Chem. 27 (1984) 539-544.
[15] Z.H. Ismail, G.M. Aly, M.S. El-Degwi, H.I. Heiba. M. M. Ghorab, Egypt J. Biot. 13 (2003) 73-82.
[16] F.M Abdelrazek, P. Metz, O. Kataeva, A. Jaeger, S.F. El-Mahrouky, Arch. Pharm. 340 (2007) 543-548.
[17] N. Foloppe, L.M. Fisher, R. Howes, A. Potter, A.G.S. Robertson, A.E. Surgenor, Bioorg. Med. Chem. 14 (2006) 4792-4802.
[18] Y. Peng, G. Song, R. Dou, Green Chem. 8 (2006) 573-575.
[19] G. Vasuki, K. Kumaravel, Tetrahedron Lett. 49 (2008) 5636-5638.
[20] F. Lehmann, J. Holm Mand, S. Laufer, Comb. Chem. 10 (2008) 364-367.
[21] K. Kanagaraj, K. Pitchumani, Tetrahedron Lett. 51 (2010) 3312-3316.
[22] M.B. Madhusudana Reddy, V.P. Jayashankara, M.A. Pasha, Synth. Commun. 40 (2010) 2930-2934.
[23] H. Mecadon, M.R. Rohman, I. Kharbangar, B.M. Laloo, I. Kharkongor, M. Rajbangshi, B. Myrboh, Tetrahedron Lett. 52 (2011) 3228-3231.
[24] H. Mecadon, M.R. Rohman, M. Rajbangshi, B. Myrboh, Tetrahedron Lett. 52 (2011) 2523-2525.
[25] M. Wu, Q. Feng, D. Wan, J. Ma, Synth. Commun. 43 (2013) 1721-1726.
[26] M. Bihani, P.P. Bora, G. Bez, H. Askari, ACS Sustainable Chem. Eng. 1 (2013) 440-447.
[27] P.P. Bora, M. Bihani, G. Bez, J. Mol. Catal. B: Enzym. 92 (2013) 24-33.
[28] R.Y. Guo, Z.M. An, L.P. Mo, S.T. Yang, H.X. Liu, S. X. Wang, Z.H. Zhang, Tetrahedron 69 (2013) 9931-9938.
[29] L. Khazdooz, A. Zarei, Iran. J. Catal. 6 (2016) 69-74.
[30] A.M. Zonouz, D. Moghani, Synth. Commun. 46 (2016) 220-225.
[31] V. Rana, K. Kanagaraj, K. Pitchamani, Tetrahedron Lett. 53 (2012) 1018-1024
[32] M.K. Rubin, P. Chu, US Patent (1990) 4954325.
[33] A. Corma, C. Corell, F. Flopis, A. Martinez, J. Perez-Pariente, Appl. Catal. A 115 (1994) 121-134.
[34] A. Corma, J. Martinez-Triguero, J. Catal. 165 (1997) 102-120.
[35] P. Wu, T. Komatsu, T. Yashima, Microporous Mesoporous Mater. 22 (1998) 343-356.
[36] R.P.L. Abril, E. Bewes, G.J. Green, D.O. Marler, D.S. Sihabi, R.F. Sacha, US Patent (1992) 5085762.
[37] P. Kaminski, I. Sobczak, P. Decyk, M. Ziolek, W.J. Roth, B. Campo, M. Daturi, J. Phys. Chem. C 117 (2013) 2147-2159.
[38] R.R. Magar, G.T. Pawar, B.R. Arbad, M.K Lande, Adv. Org. Chem. Lett. 3 (2016) 8-14
[39] M.M.J. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, 4th Ed., Elsevier, New York, 2001.
[40] F. Testa, F. Crea, G.D. Diodati, L. Pasqua, R. Aiello, G. Terwagne, P. Lentz, J.B. Nagy, Microporous Mesoporous Mater. 30 (1999) 187-197.
[41] P. Sharma, J. Yeo, M.H. Han, C.H. Cho, RSC Adv. 2 (2012) 7809-7823.
[42] P. Wu, H. Lin, T. Komastu, T. Yashima, Chem. Commun. (1997) 663-664.