5-sulfosalicylic acid as an efficient organocatalyst for environmentally benign synthesis of 2-substituted benzimidazoles
الموضوعات : Iranian Journal of CatalysisChandrakant Bhenki 1 , Shrikrishna Karhale 2 , Vasant Helavi 3
1 - Department of Chemistry, Rajaram College, Kolhapur 416004, India.
2 - Department of Chemistry, Rajaram College, Kolhapur 416004, India.
3 - Department of Chemistry, Rajaram College, Kolhapur 416004, India.
الکلمات المفتاحية: o-Phenylenediamine, Aromatic aldehydes, 5-SSA, 2-Substituted benzimidazoles,
ملخص المقالة :
A water soluble, Bronsted acid, 5-sulfosalicylic acid as an efficient organocatalyst was used for the synthesis of physiologically active 2-substituted benzimidazole derivatives from o-phenylenediamine and aromatic aldehydes in ethanol at reflux condition. Cost-effectiveness, use of non-hazardous solvents, metal free and commercially available catalyst, single-step, environmentally friendly green method, high conversions, cleaner reaction profiles and simple experimental and workup procedures are the remarkable features of this method. A water soluble, Bronsted acid, 5-sulfosalicylic acid as an efficient organocatalyst has been used for the synthesis of physiologically active 2-substituted benzimidazole derivatives from o-phenylenediamine and aromatic aldehydes in ethanol at reflux condition. Cost-effectiveness, use of non-hazardous solvents, metal free and commercially available catalyst, single step, environmentally friendly green method, high conversions, cleaner reaction profiles and simple experimental and workup procedures are the remarkable features of this method.
[1] H.A. Barker, R.D. Smyth, H. Weissbach, J.I. Toohey, J.N. Ladd, B.E. Volcani, J. Biolog. Chem. 235 (1960) 480-488.
[2] C. Mukhopadhyay, S. Ghosh, S. Sengupta, S. De, RSC Adv. 1 (2011) 1033-1037.
[3] S. Demirayak, I. Kayagil, L. Yurttas, Eur. J. Med. Chem. 46 (2011) 411-416.
[4] N. Singh, A. Pandurangan, K. Rana, P. Anand, A. Ahmad, A. Tiwari, Int. Curr. Pharm. J. 1 (2012) 119-127.
[5] S. Bhattacharya, P. Chaudhuri, Curr. Med. Chem. 15 (2008) 1762-1777.
[6] M. Boiani, M. Gonzalez, Mini Rev. Med. Chem. 5 (2005) 409-424.
[7] D.A. Horton, G.T. Bourne, M.L. Smythe, Chem. Rev. 103 (2003) 893-930.
[8] A.R. Porcari, R.V. Devivar, L.S. Kucera, J.C. Dreach, L.B. Townsend, J. Med. Chem. 41 (1998) 1252- 1262.
[9] M.T. Migawa, J.L. Girardet, J.A. Walker, G.W. Koszalka, S.D. Chamberjain, J.C. Townsend, J. Med. Chem. 41 (1998) 1242-1251.
[10] I. Tamm, K. Folkers, C.H. Shunk, F.L. Horsfall, J. Exp. Med. 99 (1954) 227-250.
[11] S. Karhale, K. Patil, C. Bhenki, G. Rashinkar, V. Helavi, Res. Chem. Intermed. 42 (2016) 7257-7268.
[12] K. Bahrami, M.M. Khodaei, F. Naali, J. Exp. Nanosci. 11 (2016) 148-160.
[13] P.L. Reddy, R. Arundhathi, M. Tripathi, D.S. Rawat, RSC Adv.6 (2016) 53596-53601.
[14] S. Majumdar, M. Chakraborty, N. Pramanik, D.K. Maiti, RSC Adv. 5 (2015) 51012-51018.
[15] M. Bala, P.K. Verma, D. Sharma, N. Kumar, B. Singh, Mol. Divers. 19 (2015) 263-272.
[16] V.A. Cardozo, R. Sanchez-Obregon, H. Salgado-Zamora, R. Jimenez-Juarez, Monatsh. Chem. 146 (2015) 1335-1337.
[17] E. Soleimani, M.M. Khodaei, H. Yazdani, P. Saei, J.Z. Reza, J. Iran. Chem. Soc. 12 (2015) 1281-1285.
[18] A.R. Momeni, H.A. Samimi, R. Jahanian, Iran. J. Catal. 2 (2012) 141-145.
[19] A.R. Momeni, S. Bagheri, Iran. J. Catal. 2 (2012) 31-35.
[20] G. Ahmadi‐Ana, S. Mohammad, M. Baghernejad, K. Niknam, Chin. J. Chem. 30 (2012) 517-521.
[21] K. Niknam, M.A. Zolfigol, N. Safikhani, Synth. Commun. 38 (2008) 2919-2928.
[22] K.U. Sadek, F. Al-Qalaf, R.A. Mekheimer, M.H. Elnagdi, Arab. J. Chem. 5 (2012) 63-66.
[23] L.S. Gadekar, B.R. Arbad, M.K. Lande, Chin. Chem. Lett. 21 (2010) 1053-1056.
[24] C. Mukhopadhyay, P. K. Tapaswi, Tetrahedron Lett. 49 (2008) 6237-6240.
[25] A. Hegedus, Z. Hell, A. Potor, Synth. Commun. 36 (2006) 3625-3630.
[26] P. Gogoi, D. Konwar, Tetrahedron Lett. 47 (2006) 79-82.
[27] M. Curini, F. Epifano, F. Montanari, O. Rosati, S. Taccone, Synlett 10 (2004) 1832-1834.
[28] C.T. Brain, S.A. Brunton, Tetrahedron Lett. 43 (2002) 1893-1895.
[29] P.I. Dalko, Enantioselective Organocatalysis: Reactions and Experimental Procedures, (ed), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007.
[30] A. Dondoni, A. Massi, Angew. Chem. Int. Ed. 47 (2008) 4638-4660.
[31] C. Zhong, X. Shi, Eur. J. Org. Chem. 2010 (2010) 2999-3025.
[32] S. Khaksar, S.M. Vahdat, R.N. Moghaddamnejad, Monatsh. Chem. 143 (2012) 1671-1674.
[33] K. Bougrin, A. Loupy, M. Soufiaoui, Tetrahedron 54 (1998) 8055-8064.
[34] K. Bahrami, M.M. Khodaei, A. Nejati, Green Chem. 12 (2010) 1237-1241.
[35] H. Sharghi, O. Asemani, R. Khalifeh, Synth. Commun. 38 (2008) 1128-1136.
[36] M.T. Maghsoodlou, N. Hazeri, M. Lashkari, F.N. Shahrokhabadi, B. Naghshbandi, M. Kazemi-doost, M. Rashidi, F. Mir, M. Kangani, S. Salahi, Res. Chem. Intermed. 41 (2015) 6985-6997.
[37] C. Mukhopadhyay, P.K. Tapaswi, R.J. Butcher, Aust. J. Chem. 62 (2009) 140-144.
[38] J. Lu, B. Yang, Y. Bai, Synth. Commun. 32 (2002) 3703-3709.
[39] D. Saha, A. Saha, B.C. Ranu, Green Chem. 11 (2009) 733-737.
[40] A.T. Khan, T. Parvin, L.H. Choudhury, Synth. Commun. 39 (2009) 2339-2346.
[41] G. Brahmachari, S. Laskar, P. Barik, RSC Adv. 3 (2013) 14245-14253.
[42] M.L. Alapati, S.R. Abburi, S.B. Mukkamala, M.K. Rao, Synth. Commun. 45 (2015) 2436-2443.