ملخص المقالة :
یکی از مهمترین مشکلات بهداشتی در سراسر جهان افزایش میکروارگانیسمهای بیماری زای مقاوم به انواع مواد ضدمیکروبی است. در این پژوهش ویژگی ضدباکتریایی نانو ذرات نقره/کلرید نقره بیوسنتزی توسط عصاره برگ گیاه دارویی مرزه تحت تاثیر دوزهای مختلف پرتو گاما مقایسه شده است. بیوسنتز نانو ذرات نقره/کلرید نقره توسط عصاره برگ گیاهان روئیده از بذرهایی که تحت تاثیر دوزهای مختلف از اشعه گاما (0، 15، 30، 60 و 90 گری) قرار گرفته بودند، انجام شد. تشکیل نانو ذرات بیوسنتزی توسط دستگاههای اسپکتروفوتومتری UV و XRD تایید شده و ویژگیهای آنها مانند میانگین اندازه توسط DLS، شکل و اندازه توسط FESEM، آنالیز عنصری توسط EDAX، تعیین گروههای عاملی عصاره گیاه موثر در فرایند توسط FTIR و ویژگی ضدباکتریایی آنها به روش انتشار دیسک (Disc Diffusion) انجام شد. بیشترین خاصیت ضدباکتریایی نانو ذرات نقره/کلرید نقره بیوسنتزی توسط دوز 15 گری از گاما با میانگین اندازه نانوذرات nm 02/40 و قطر هاله بازدارندگی رشد mm13 بر ضد باکتری Escherichia coli و کمترین آن در دوز 90 گری با میانگین اندازه نانوذرات nm 62/170 و قطر هاله بازدارندگی رشد mm10 بر ضد همین باکتری مشاهده شد. نانوذرات نقره بیوسنتزی توسط عصاره گیاه مرزه تیمار شده با دوز 15 گری از پرتو گاما، بیشترین ویژگی ضد باکتریایی را بر علیه باکتری Bacillus subtilis و به ویژه E. coli نشان داد. زیست سازگاری بالای این نانو ذرات بیوسنتزی، آنها را جایگزین مناسبی به جای مواد مشابه سنتز شده از روشهای غیر زیستی نشان میدهد.
المصادر:
Abbaszadegan, A., Ghahramani, Y., Gholami, A., Hemmateenejad, B., Dorostkar, S. and Nabavizadeh, M. 2015. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. Journal of Nanomaterials, 16(1): 1-8.
2. Ajitha, B., Reddy, Y. A. K. and Reddy, P. S. 2014. Biogenic nano-scale silver particles by
Tephrosia purpurea leaf extract and Ttheir inborn antimicrobial activity. Spectrochimica Acta, Part A, 121(5): 164-172.
3. Al Aboody, M. S. 2019. Silver/silver chloride (Ag/AgCl) nanoparticles synthesized from Azadirachta indica Lalex and its antibiofilm activity against Fuconazole resistant candida tropicalis. Artificial Cells, Nanomedicine, and Biotechnology, 47(1): 2107-2113.
4. Amendola, V., Bakr, O. M. and Stellacci, F. 2010. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics, 5: 85-97.
5. Arya, V. 2010. Living systems: eco-friendly nanofactories. Digest Journal of Nanomaterials and Biostructures, 5(1): 9-21.
6. AshaRani, P., Hande, M. P. and Valiyaveettil, S. 2009. Anti-proliferative activity of silver BMC cell biology, 10(65): 1-14.
7. Ashrafi Parchin, R., Nasrollah Nezhad Ghomi, A. A., Naghdi Badi, H., Eskandari, A., Navabpour, S. and Mehrafarin, A. 2019. Effect of gamma irradiation on growth and trigonelline content in hairy root of Iranian fenugreek (Trigonella foenum-graecum ) (in Persian). Journal of Medicinal Plants, 4 (27): 160-170.
8. Azlin-Hasim, S., Cruz-Romero, M. C., Morris, M. A., Cummins, E. and Kerry, J. P. 2015. Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packaging and Shelf Life, 4: 26-35.
9. Berni, E. A. No., Ribeiro, C. and Zucolotto, V. 2008. Síntese de nanopartículas de prata para aplicação na sanitização de embalagens .Comunicado Técnico, 99: 1-4.
10. Bhuiyan, F. R., Howlader, S., Raihan, T. and Hasan, M. 2020. Plants metabolites: possibility of natural therapeutics against
the COVID-19 pandemic. Frontiers in Medicine, 7(444): 1-26.
11. Borm, P., Klaessig, F. C., Landry, T. D., Moudgil, B., Pauluhn, J., Thomas, K., Trottier, R. and Wood, S. 2006. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicological Sciences, 90 (1): 23-32.
12. Bumbudsanpharoke, N. and Ko, S. 2015. Nano-food packaging: an overview of market, migration research and safety regulations. Journal of Food Science, 80: 910-923.
13. Carbone, M., Donia, D. T., Sabbatella, G. and Antiochia, R. 2016. Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University – Science, 28: 273-279.
14. Carbone, M., Sabbatella, G., Antonaroli, S., Remita, H., Orlando, V., Biagioni, S. and Nucara, A. 2015. Exogenous control over intracellular acidification: enhancement via proton caged compounds coupled to gold
nanoparticles. Biochimica et Biophysica Acta - General Subjects, 1850: 2304-2307.
15. Chatterjee, T., Chatterjee, B. K., Majumdar, D. and Chakrabarti, P. 2015. Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified gompertz model. Biochimca et Biophysica Acta, 1850(2): 299-306.
16. Das, M. and Smita, S. S. 2018. Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.)
and study of their antimicrobial activity. Applied Nanoscience, 8: 1059-1067.
17. Derksen, A., Kühn, J., Hafezi, W., Sendker, J., Ehrhardt, C. and Ludwig, S. 2016. Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum against the attachment of influenza A Virus. Journal of Ethnopharmacology, 188: 144-152.
18. Du, Y., Huang, Z., Wu, S., Xiong, K., Zhang, X., Zheng, B., Nadimicherla, R., Fu, R. and Wu, D. 2018. Preparation of versatile yolk-shell nanoparticles with a precious metal yolk and a microporous polymer shell for high-performance catalysts and antibacterial agents. Polymer,137: 195-200.
19. Duncan, T.V. 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science,363: 1-24.
20. Durán, N., Cuevas, R., Cordi, L., Rubilar, O. and Diez, M. C. 2014. Biogenic silver nanoparticles
associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. SpringerPlus, 3 (645): 1-7.
21. Elangovan, K., Elumalai, D., Anupriya, S., Shenbhagaraman, R., Kaleena, P. K., Murugesan, K. 2015. Phytomediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bioefficacy on anticancer and antibacterial activities. Journal of Photochemistry and Photobiology B, 151: 118-124.
22. Gade, A., Bonde, P., Ingle, A., Marcato, P., Duran, N. and Rai, M. 2008. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy, 2(3): 243–247.
23. Gan, L., Zhang, S., Zhang, Y., He, S. and Tian, Y. 2018. Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L. Preparative Biochemistry and Biotechnology, 48(7): 582-588.
Gomaa, E. Z. 2017. Silver nanoparticles as an antimicrobial agent: a case study on Staphylococcus aureus and Escherichia coli as models for gram-positive and gram-negative bacteria. Journal of Genneral Applied Microbiology, 63(1): 36-43.
Govindaraju, K., Tamilselvan, S., Kiruthiga, V. and Singaravelu, G. 2010. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. Journal of Biopesticides, 3(1): 394–399.
Hanafy, R. S. and Akladious, S. A. 2018. Physiological and molecular studies on the effect of gamma radiation in fenugreek (Trigonella foenum-graecum L.) Plants. Journal of Genetic Engineering and Biotechnology, 16: 683-692.
Hardy, A., Benford, D., Halldorsson, T. and Jeger, M. J. 2018. Guidance on the risk assessm, ent of the vapplication of nanoscience and nanotechnology in the food and feed chain. European Food Safety Authority, 16 (7): 1-95.
Hatchett, D. W. and White, H. S. 1996. Electrochemistry of sulfur adlayers on the low-index faces of silver. Journal of Physical Chemistry, 100(23): 9854-9859.
Hoang, T. M., Moghaddam, L., Williams, B., Khanna, H., Dale, J. and Mundree, S. G. 2015. Development of salinity tolerance in rice by constitutive overexpression of genes
involved in the regulation of programmed cell death. Frontiers in Plant Science, 6 (175): 1-14.
Holt, K. B. and Bard, A. J. 2005. Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry, 44 (39): 13214-13223.
31.Hoseinzadeh, E., Samargandi, M. R., Alikhani, M. Y., Roshanaei, G. H. and Asgari, G. H. 2012. Antimicrobial efficacy of zinc oxide nanoparticles suspension against gram negative and gram positive bacteria (in Persian). Iranian Journal of Health, Safety and Environment, 5(3): 463-474.
Jan, S., Parween, T., Siddiqi, T. O. and Uzzafar, M. 2012. Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant Products. Environmental Reviews, 20:17-39.
33- Jegadeeswaran, P., Shivaraj, R. and Venckatesh, R. 2012. Green synthesis of silver nanoparticles from extracts of Padina tetrastromatica leaf. Digest Journal of Nanomaterials and Biostructures, 7(3):991-998
Jin, J. C., Wu, X. J., Xu, J., Wang, B. B., Jiang, F. L. and Liu, Y. 2017. Ultrasmall silver nanoclusters: highly efficient antibacterial activity and their mechanisms. Biomaterials Science, 5(2): 247-257
35-Kavoosi, S. and Yaghoubi, H. 2017. Synthesis of Silver Nanoparticles Using Green Method of Plant Extract European Marjoram (Origanum majorana) and Their Antibacterial Effects. Journal of Cellular and Molecular Research, 30(2): 161-173
Kaya, E. E., Kaya, O., Alkan, G., Gürmen, S., Stopic, S. and Friedrich, B. 2020. New proposal for size and size-distribution evaluation of nanoparticles synthesized via ultrasonic spray pyrolysis using search algorithm based on image-processing technique. Materials, 13(38): 1-10.
Kazazi, H., Rezaei, K., Ghotb-Sharif, S. J., Emam-Jomeh, Z. and Yamini, Y. 2007. Supercritical fluid extraction of flavors and fragrances from Hyssopous officinalis L. cultivated in Iran. Food Chemistry, 105(2): 805-811.
Khalandi, B., Asadi, N., Milani, M., Davaran, S., Jafari Najaf Abadiet, A. and Abasi, E. 2017. A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug research (Stuttgart), 67(2): 70-76.
Khan, M. M., Din, R., Qasim, M., Jehan, S. and Iqbal, M. M. 2003. Induced mutability studies for yield and yield related characters in three wheat (Triticum aestivum L.) varieties. Asian Journal of Plant Sciences, 2 (17): 1183-1187.
Kim, T., Braun, G. B., She, Z. G., Hussain, S., Rouslahti, E. and Sailor, M.J. 2016. Composite porous silicon-silver nanoparticles as theranostic antibacterial agents. ACS Applied Materials and Interfaces, 8(44): 30449-30457.
Kizil, S., Turk, M., Özguven, M., Khawar, K. M. 2009. Full blooming stage is suitable for herbage yield and essential oil content of summer savory (Satureja hortensis L.). Journal of Essential Oil-Bearing Plants, 12 (5): 620-629.
Klueh, U., Wagner, V., Kelly, S., Johnson, A., Bryers, J. D. 2000. Efficacy of silver coated fabric to prevent bacterial colonization and subsequent devicebased biofilm formation. Journal of Biomedical Materials Research, 53 (6): 621-631.
Krishnaraj, C., Muthukumaran, P., Ramachandran, R., Balakumaran, M. and Kalaichelvan, P. 2014. Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnology Reports, 4: 42-49.
Kumar, P., Selvi, S. S. and Govindaraju, M. 2013. Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against candida spp. Applied Nanoscience, 3 (6): 495-500.
Kumar, V. and Yadav S. K. 2009. Plant-mediated synthesis of silver and gold Nnanoparticles and
their applications. Journal of Chemical Technology and Biotechnology, 84(2):151-157.
Lombardo, P. C., Poli, A. L., Castro, L. F., Perussi, J. R. and Schmitt, C. C. 2016. Photochemical deposition of silver nanoparticles on clays and exploring their antibacterial activity. ACS Applied Materials and Interfaces, 8(33): 21640-21647.
Malhotra, B., Keshwani, A. and Kharkwal, H. 2015. Antimicrobial food packaging: potential and pitfalls. Frontiers in Microbiology, 6: 1-9.
Martinez-Abad, A., Lagaron, J. M. and Ocio, M. J. 2012. Development and characterization of silver-based antimicrobial ethylene-vinyl alcohol copolymer (EVOH) films for food-packaging applications. Journal of Agricultural and Food Chemistry, 60:5350-5359.
Mathew, S., Victorio, C. P., Jasmine Sidhi, M. S., Baby Thanzeela, B. H. 2020. Biosynthesis of silver nanoparticle using flowers of Calotropis gigantea (L.) W.T. Aiton and activity against pathogenic bacteria. Arabian Journal of Chemistry, 13: 9139-9144.
Meng, Y. 2015. A sustainable approach to fabricating Ag nanoparticles/PVA hybrid nanofiber and its catalytic activity. Nanomateriales, 5: 1124-1135.
Modi, M., Nutan, N., Pancholi, B., Kulshrestha, S., Rawat, A. K. S., Malhotra, S. and Gupta, S. K. 2013. Anti-HIV-1 activity, protease inhibition and safety profile of extracts prepared from Rhus parviflora. BMC Complementary and Alternative Medicine, 13 (158): 1-9.
Mohajer, S., Taha, R. M., Lay, M. M., Khorasani Esmaeili, A. and Khalili, M. 2014. Estimulatory effects of gamma irradiation on phytochemical properties, mitotic behaviour, and nutritional composition of sainfon (Onobrychis viciifolia Scop.). Scientific World Journal, 2014: 3-11.
Monteiro, D. R., Gorup, L. F., Takamiya, A. S., de Camargo, E. R., Filho, A. C. and Barbosa, D. B. 2012. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles. Journal of Prosthodontic, 21 (1): 7-15.
Morris, J. K. 2011. How safe is our food? Emerging Infectious Diseases, 17: 126-128.
Moussa, J. P. 2006. Role of gamma irradiation in regulation of NO3 level in rocket (Eruca vescaria subsp. sativa) plants. Russian Journal of Plant Physiology, 53: 193-197.
Nasr, N. F. 2015. Applications of nanotechnology in food microbiology. International Journal of Current Microbiology and Applied Sciences,4:846-853.
Ouda, S. M. 2014. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Research Journal of Microbiology, 9 (1): 34-42.
Ovais, M., Khalil, A. T., Raza, A., Adeeb Khan, M., Ahmad, I. and Islam, N. U. 2016. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine (London), 12(23):
3157-3177.
Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. A. 2013. Introduction to Spectroscopy. Cengage Learning, Washington, pp. 1-752.
Picoli, S. U., Durán, M., Andrade, P. F. and Duran, N. 2016. Silver nanoparticles/silver chloride (Ag/AgCl) synthesized from Fusarium oxysporum acting against Klebsiella pneumouniae carbapenemase (KPC) and extended spectrum beta-lactamase (ESBL.). Frontiers in Nanoscience and Nanotechnology, 2 (2): 107-110.
Pirtarighat, S., Ghannadnia, M. and Baghshahi, S. 2017. Antimicrobial effects of green synthesized silver nanoparticles using Melissa officinalis grown under in vitro condition. Nanomedicine Journal, 4(3): 184-190.
Pirtarighat, S., Ghannadnia, M. and Baghshahi S. 2019. Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled conditions for bactericidal application. Materials Science and Engineering: C. 98: 250-255.
Rai, M., Yadav, A. and Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27: 76-83.
Rasaee, I., Ghannadnia, M. and Baghshahi S. 2018. Biosynthesis of silver nanoparticles using leaf extract of Satureja hortensis treated with NaCl and its antibacterial properties. Microporous and Mesoporous Materials. 264: 240-247.
Rasaee, I., Ghannadnia, M. and Baghshahi, S. 2020. Assesment of antibacterial properties of silver nanoparticles biosynthesized using leaf extract of Hyssopus officinalis L. grown under salinity stress (in Persian). Iranian Journal of Medicinal and Aromatic Plants Research, 36 (4): 691-708.
Raut, R., Lakkakula, J., Kolekar, N., Mendhulkar, V. D. and Sahebrao, K. 2009. Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Current, Nanoscience 5 (1): 112-117.
Rauwe, P., Küünal, S., Ferdov, S. and Rauwel, E. 2014. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Advances in Materials Science and Engineering, 2015: 1-9.
Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J. Y. and Kim, D. 2010. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLPro inhibition. Bioorganic and Medicinal Chemistry, 18 (22): 7940-7947.
69-Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J. and Ausman, K. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Particle and Fibre Toxicology, 2: 38-43.
Sathishkumar, M., Sneha, K., Won, S., Cho, C. W., Kim, S. and Yun, Y. S. 2009. Cinnamon Zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B, 73: 332-338.
Saufi, A. 2007. Lignans in Phaleria macrocarpa and in Linum flavum Var. compactum L. Doctoral Thesis. Heinrich-Heine-Dusseldorf University, Germany, 300-316.
Schreurs, W. J. and Rosenberg, H. 1982. Effect of silver ions on transport and retention of phosphate by Escherichia coli. Journal of Bacteriology, 152 (1): 7-13.
Seong, M. and Lee, D. G. 2017. Silver nanoparticles against Salmonella enterica serotype typhimurium: role of inner membrane dysfunction. Current Microbiology, 74(6): 661-670.
Sharifi-Rad, M., Pohl, P., Epifano, F. and Álvarez-Suarez, J. M. 2020. Green synthesis of silver nanoparticles using Astragalus tribuloides Delile. Root extract: characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomateriales, 10 (2383): 1-17.
Sharma, D. and Dhanjal, D. S. 2016. Bio-nanotechnology for active food packaging. Journal of Applied Pharmaceutical Science, 6 (9): 220-226.
Singh, P. and Raja, R. B. 2011. Biological synthesis and characterization of silver nanoparticles using the fungus Trichoderma harzianum. Asian Journal of Experimental Biological Sciences, 2 (4): 600-605.
Siritongsuk, P., Hongsing, N., Thammawithan, S., Daduang, S., Klaynongsruang, S. and Tuanyok, A. 2016. Two-phase bactericidal mechanism of silver nanoparticles against Burkholderia pseudomallei. Plos One, 11 (12): 1-22.
Sre, P. R., Reka, M., Poovazhagi, R., Kumar, M. A. and Murugesan, K. A. 2015. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica Lam. Spectrochimica Acta, Part A, 135: 1137-1144.
Stehfest, K., Toepel, J. and Wilhelm, C. 2005. The application of micro-FTIR spectroscopy to analyze Nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiology and Biochemistry, 43 (7): 717-726.
Tavakoli, H., Rastegar, H., Taherian, M., Samadi, M. and Rostami, H. 2017. The effect of nano silver packaging in increasing the shelf life of nuts: an in vitro model. Italian Journal of Food Safety, 6 (4): 156-161.
Van Der Wal, A., Norde, W., Zehnder, A. J. B. and Lyklema, J. 1997. Determination of the total charge in the cell walls of gram-positive bacteria. Colloids and Surfaces B: Biointerfaces, 9 (1-2): 81-100.
Vardhan, P. V. and Shukla, L. I. 2017. Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production. International Journal of Radiation Biology, 93(9): 1-8.
Vermeiren, L., Devlieghere, F. and Debevere, J. 2002. Effectiveness of some recent antimicrobial packaging concepts. Food Additives and Contaminants, 19: 163-171.
Wei, X., Luo, M., Li, W., Yang, L., Liang, X., Xu, L., Kong, P. and Liu, H. 2012. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresource Technology, 103 (1): 273-278.
Yeo, S. Y., Lee, H. J. and Jeong, S. H. 2003. Preparation of nanocomposite fibers for permanent antibacterial effect. Journal
of Materials Science, 38: 2143-2147.
You, C., Han, C., Wang, X., Zheng, Y., Li, Q. and Hu, X. 2012. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Molecular Biology Reports, 39 (9): 9193-9201.
Zhang, G. S., Zhang, Y., He, S. and Tian, Y. 2018. Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L. Preparative Biochemistry and Biotechnology, 48 (7): 582-588.
Zhao, R., Lv, M., Li, Y., Sun, M., Kong, W., Wang, L. 2017. Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term
antibacterial activity. ACS Applied Materials and Interfaces, 9 (18): 15328-15341.
Zhong, X., Song, Y., Yang, P., Wang, Y., Jiang, S. and Zang, X. 2016. Titanium surface priming with phase-transited lysozyme to establish a silver nanoparticle-loaded chitosan/hyaluronic acid antibacterial multilayer via layer-by-layer self-assembly. Plos One, 11 (1): 1-17.
_||_