پاسخ کاسپاز 3 و ظرفیت تام آنتی اکسیدانی به مصرف دارچین و تمرین اینتروال در موشهای صحرایی نر
محورهای موضوعی : زیست شناسی جانوری
1 - گروه فیزیولوژی ورزشی، واحد ورامین -پیشوا، دانشگاه آزاد اسلامی، ورامین ، ایران
2 - گروه فیزیولوژی ورزشی، واحد ورامین -پیشوا، دانشگاه آزاد اسلامی، ورامین ، ایران
کلید واژه: دارچین , تمرین اینتروال , کاسپاز 3 , TAC , آنتی اکسیدان,
چکیده مقاله :
مقدمه: استرس اکسیداتیو و آپوپتوز سلولی از مهمترین مکانیسمهای تخریب بافتی بهشمار میروند. مداخلات تغذیهای و فعالیتهای ورزشی ممکن است اثراتی بر این شاخصها داشته باشند. هدف از این مطالعه بررسی اثر یک دوره مصرف دارچین و تمرین اینتروال شنا با شدت متوسط بر سطوح کاسپاز-3 و ظرفیت تام آنتی اکسیدانی در رتهای نر بود.
مواد و روش ها: در این پژوهش تجربی، 40 موش صحرایی نر ویستار بهطور تصادفی به چهار گروه: کنترل، عصاره دارچین، تمرین اینتروال شنا، و ترکیبی (عصاره دارچین+تمرین) تقسیم شدند. پروتکل تمرین شامل شنای اینتروال با شدت متوسط ( 5 جلسه در هفته بهمدت 6 هفته) و مصرف دارچین ( دوز 200 میلیگرم بر کیلوگرم وزن بدن و غلظت 100 mg/mL) به صورت گاواژ روزانه بود. در پایان دوره، نمونههای سرمی از قلب اخذ و برای اندازهگیری سطوح کاسپاز-3 و ظرفیت تام آنتی اکسیدانی، با استفاده از روش ELISA مورد تحلیل قرار گرفتند. دادهها با آزمونهای میانگین، انحراف استاندارد، تحلیل واریانس دو طرفه و آزمون تعقیبی توکی بررسی شدند (P<0/05).
یافتهها: نتایج نشان داد که در گروه ترکیبی، سطح کاسپاز-3 نسبت به گروه کنترل و سایر گروهها کاهش معنادارداشته است و ظرفیت تام آنتی اکسیدانی در گروه های مداخله افزایش معنادار داشته اند (P<0/05). اندازه اثر نشان داد در گروه تعاملی هم افزایی اثرات مشاهده می شود.
نتیجهگیری: یافتههای پژوهش نشان داد ترکیب مصرف عصاره دارچین و تمرین اینتروال با شدت متوسط شنا میتواند همزمان با کاهش فرآیندهای آپوپتوتیک از طریق مهار کاسپاز-3، موجب ارتقای ظرفیت دفاع آنتیاکسیدانی بدن گردد. این نتایج میتواند مبنایی برای طراحی مداخلات پیشگیرانه یا درمانی مبتنی بر ترکیب فعالیت بدنی و مکملهای گیاهی در شرایط استرس اکسیداتیو باشد.
Introduction: Oxidative stress and cell apoptosis are considered to be the most important mechanisms of tissue damage. Nutritional interventions and exercise activities may have effects on these indicators. This study aimed to investigate the effect of a period of cinnamon consumption and moderate-intensity interval swimming training on caspase-3 and TAC levels in male rats.
Materials and Methods: In this experimental study, 40 male Wistar rats were randomly divided into four groups: control, cinnamon, interval swimming training, and combination (cinnamon + interval swimming training). The training protocol included moderate-intensity interval swimming (5 sessions per week for 6 weeks) and cinnamon consumption (dose 200 mg/kg body weight) as daily gavage. At the end of the period, serum samples were collected from the heart and analyzed using ELISA to measure caspase-3 levels and total antioxidant capacity. Data were analyzed using mean, standard deviation, two-way analysis of variance, and Tukey's post hoc test (P<0.05).
Results: The results showed that in the combined group, caspase-3 levels decreased significantly compared to the control and other groups, and TAC increased significantly in the intervention groups (P<0.05). The effect size showed that synergistic effects were observed in the interaction group.
Conclusion: The findings of the study showed that the combination of cinnamon consumption and moderate-intensity interval swimming training can simultaneously reduce apoptotic processes through caspase-3 inhibition and improve the body's antioxidant defense capacity. These results can be a basis for designing preventive or therapeutic interventions based on the combination of physical activity and herbal supplements in conditions of oxidative stress.
Keywords: Cinnamon, Interval Training, Caspase 3, TAC, Antioxidant
1. Meng Q, Su CH. The Impact of Physical Exercise on Oxidative and Nitrosative Stress: Balancing the Benefits and Risks. Antioxidants (Basel). 2024 May 7;13(5):573. doi: 10.3390/antiox13050573.
2. Reljic D. High-Intensity Interval Training as Redox Medicine: Targeting Oxidative Stress and Antioxidant Adaptations in Cardio metabolic Disease Cohorts. Antioxidants. 2025;14(8):937. doi: 10.3390/antiox14080937.
3. Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol. 2022 Jun 6;221(6):e202201159. doi: 10.1083/jcb.202201159.
4. Kashani Vahid N, Nameni F, Yazdanparast Chaharmahali B. Effect of Interval Training and Curcumin on BAX, Bcl-2, and Caspase-3 Enzyme Activity in Rats. Gene Cell Tissue. 2022;9(4):e112792. doi: 10.5812/gct-112792.
5. Gulcin İ. Antioxidants: a comprehensive review. Arch Toxicol. 2025;99:1893–1997. doi: 10.1007/s00204-025-03997-2.
6. Zhang X, Zhong Y, Rajabi S. Polyphenols and post-exercise muscle damage: a comprehensive review of literature. Eur J Med Res. 2025;30:260. doi: 10.1186/s40001-025-02506-6.
7. Sun Y, Chen L, Xiao L, Wang X, Hallajzadeh J. The impacts of natural polyphenols and exercise alone or together on microRNAs and angiogenic signaling. Front Pharmacol. 2025;16:1560305. doi: 10.3389/fphar.2025.1560305.
8. Khedkar S, Khan MA. Aqueous Extract of Cinnamon (Cinnamomum spp.): Role in Cancer and Inflammation. Evid Based Complement Alternat Med. 2023;2023:5467342. doi: 10.1155/2023/5467342.
9. Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr. 2023 Mar 28;10:1118761. doi: 10.3389/fnut.2023.1118761.
10. Ravi Kiran T, Subramanyam MV, Asha Devi S. Swim exercise training and adaptations in the antioxidant defense system of myocardium of old rats: relationship to swim intensity and duration. Comp Biochem Physiol B Biochem Mol Biol. 2004 Feb;137(2):187-96. doi: 10.1016/j.cbpc.2003.11.002.
11. Akter MA, Yesmin N, Talukder MBA, Alam MM. Evaluation of anaesthesia with xylazine-ketamine and xylazine-fentanyl-ketamine in rabbits: A comparative study. J Adv Vet Bio Sci Tech. 2023;8(1):38-46. doi: 10.31797/vetbio.1129402.
12. Nichani K, Li J, Suzuki M, Houston JP. Evaluation of Caspase-3 Activity during Apoptosis with Fluorescence Lifetime-Based Cytometry Measurements and Phasor Analyses. Cytometry A. 2020 Dec;97(12):1265-1275. doi: 10.1002/cyto.a.24207.
13. Hsieh C, Rajashekaraiah V. Ferric reducing ability of plasma: a potential oxidative stress marker in stored plasma. Acta Haematol Pol. 2021;52(1):61-7. doi: 10.5603/AHP.2021.0009.
14. Nile A, Shin J, Shin J, Park GS, Lee S, Lee JH, et al. Cinnamaldehyde-Rich Cinnamon Extract Induces Cell Death in Colon Cancer Cell Lines HCT 116 and HT-29. Int J Mol Sci. 2023;24(9):8191. doi: 10.3390/ijms24098191.
15. Biggs MA, Banerjee IA. Targeting Breast and Gynecologic Cancers: The Role of Natural Products with Emphasis on Cinnamon and Its Derivatives—Advances in Nanoscale Therapeutics and Adjuvant Strategies. Macromol. 2025;5(1):13. doi: 10.3390/macromol5010013.
16. Martinez-Canton M, Galvan-Alvarez V, Martin-Rincon M, Calbet JA, Gallego-Selles A. Unlocking peak performance: The role of Nrf2 in enhancing exercise outcomes and training adaptation in humans. Free Radic Biol Med. 2024;224:168-81. doi: 10.1016/j.freeradbiomed.2024.08.011.
17. Done A, Gage MJ, Nieto NC, Traustadóttir T. Exercise-Induced Nrf2-signaling is Impaired in Aging. Free Radic Biol Med. 2016 Apr;96:130-8. doi: 10.1016/j.freeradbiomed.2016.04.024.
18. Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, et al. Oxidative Stress, Mitochondrial Function and Adaptation to Exercise: New Perspectives in Nutrition. Life (Basel). 2021 Nov 22;11(11):1269. doi: 10.3390/life11111269.
19. Leite CDFC, Zovico PVC, Rica RL, Barros BM, Machado AF, Evangelista AL, et al. Exercise-Induced Muscle Damage after a High-Intensity Interval Exercise Session: Systematic Review. Int J Environ Res Public Health. 2023 Nov 20;20(22):7082. doi: 10.3390/ijerph20227082.
20. Lee TT, Li TL, Ko BJ, Chien LH. Effect of Acute High-Intensity Interval Training on Immune Function and Oxidative Stress in Canoe/Kayak Athletes. Biology (Basel). 2023 Aug 18;12(8):1144. doi: 10.3390/biology12081144.
21. Davoudi F, Ramazani E. Antioxidant and anti-inflammatory effects of Cinnamomum species and their bioactive compounds: An updated review of the molecular mechanisms. Physiol Pharmacol. 2024;28(2).
22. Das G, Gonçalves S, Heredia JB, Romano A, Jiménez-Ortega LA, et al. Cardiovascular protective effect of cinnamon and its major bioactive constituents: An update. J Funct Foods. 2022; 97:105045. doi: 10.1016/j.jff.2022.105045.
23. Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular Red-Ox system in health and disease: The latest update. Biomed Pharmacother. 2023;162:114606. doi: 10.1016/j.biopha.2023.114606.
24. Rao MJ, Duan M, Zhou C, Jiao J, Cheng P, Yang L, et al. Antioxidant Defense System in Plants: Reactive Oxygen Species Production, Signaling, and Scavenging During Abiotic Stress-Induced Oxidative Damage. Horticulturae. 2025;11(5):477. doi: 10.3390/horticulturae11050477.
25. Jafari A, Mardani H, Faghfouri AH, et al. The effect of cinnamon supplementation on cardiovascular risk factors in adults: a GRADE assessed systematic review, dose–response and meta-analysis of randomized controlled trials. J Health Popul Nutr. 2025;44:233. doi: 10.1186/s41043-025-00967-3.
26. Sun Y, Chen L, Xiao L, Wang X, Hallajzadeh J. The impacts of natural polyphenols and exercise alone or together on microRNAs and angiogenic signaling. Front Pharmacol. 2025;16:1560305. doi: 10.3389/fphar.2025.1560305.
27. Fakhri KU, Sharma D, Fatma H, Yasin D, Alam M, Sami N, et al. The Dual Role of Dietary Phytochemicals in Oxidative Stress: Implications for Oncogenesis, Cancer Chemoprevention, and ncRNA Regulation. Antioxidants. 2025;14(6):620. doi: 10.3390/antiox14060620.
28. Zaid NSN, Muhamad AS, Jawis MN, Ooi FK, Mohamed M, Mohamud R, et al. The Effect of Exercise on Immune Response in Population with Increased Risk Factors for Cardiovascular Disease: A Systematic Review. Malays J Med Sci. 2024 Oct;31(5):83-108. doi: 10.21315/mjms2024.31.5.6.
29. Rodríguez-Negrete EV, Morales-González Á, Madrigal-Santillán EO, Sánchez-Reyes K, Álvarez-González I, Madrigal-Bujaidar E, et al. Phytochemicals and Their Usefulness in the Maintenance of Health. Plants (Basel). 2024;13(4):523. doi: 10.3390/plants13040523.
30. Jomova K, Alomar SY, Alwasel SH, et al. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterial with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 2024;98:1323–1367. doi: 10.1007/s00204-024-03696-4.
31. Pagliari S, Forcella M, Lonati E, Sacco G, Romaniello F, Rovellini P, et al. Antioxidant and Anti-Inflammatory Effect of Cinnamon (Cinnamomum verum J. Presl) Bark Extract after In Vitro Digestion Simulation. Foods. 2023 Jan 18;12(3):452. doi: 10.3390/foods12030452.
32. Jóźwiak B, Domin R, Krzywicka M, Laudańska-Krzemińska I. Effect of exercise alone and in combination with time-restricted eating on cardio metabolic health in menopausal women. J Transl Med. 2024 Oct 21;22(1):957. doi: 10.1186/s12967-024-05738-y.
33. Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health through Nrf2 and Related Pathways. Int J Mol Sci. 2025;26(3):1098. doi: 10.3390/ijms26031098.
34. Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, et al. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 2024;9(1):53. doi: 10.1038/s41392-024-01757-9.
35. Chen J, Zhou R, Feng Y, Cheng L. Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther. 2022;7(1):383. doi: 10.1038/s41392-022-01233-2.
36. Zhou X, Luo Y, Yao X. Exercise-driven cellular autophagy: A bridge to systematic wellness. J Adv Res. 2025; doi: 10.1016/j.jare.2024.12.036.
37. Martinez-Canton M, Galvan-Alvarez V, Martin-Rincon M, Calbet JA, Gallego-Selles A. Unlocking peak performance: The role of Nrf2 in enhancing exercise outcomes and training adaptation in humans. Free Radic Biol Med. 2024;224:168-81. doi: 10.1016/j.freeradbiomed.2024.08.011.