ارزیابی روشهای ریزمقیاسسازی DisTRAD و TsHARP بهمنظور افزایش قدرت تفکیک مکانی تصاویر حرارتی سنجنده مادیس
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریزهره فرجی 1 , عباس کاویانی 2 * , پیمان دانشکار آراسته 3
1 - دانشجوی دکتری، دانشکده کشاورزی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران
2 - دانشیار، دانشکده کشاورزی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران
3 - دانشیار، دانشکده کشاورزی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران
کلید واژه: NDVI, رگرسیون خطی, LST, کشت و صنعت امیرکبیر,
چکیده مقاله :
زمینه و هدف: دمای سطح زمین (LST) یکی از مهمترین پارامترهای مؤثر بر محیط و سیستمهای اکولوژیکی است و بر بسیاری از فرآیندهای سطح زمین تأثیرگذار است. LST بهطور گستردهای در مطالعات رطوبت خاک، گرمای سطح زمین شهری، نظارت بر محیطزیست، شبیهسازی فرآیند بیوژئوشیمیایی محیطی و ارزیابی تغییرات آب و هوا استفاده میشود. لذا توسعه روشهایی بهمنظور تخمین هرچه دقیقتر مکانی و زمانی این پارامتر کلیدی، کمک شایانی به توسعه بخش کشاورزی و حفظ منابع آبی میکند. هدف از تحقیق حاضر، ارزیابی نتایج روشهای ریزمقیاسسازی DisTRAD و TsHARP بهمنظور افزایش قدرت تفکیک مکانی تصاویر حرارتی سنجنده مادیس حاصل از ماهوارههای ترا و آکوا، از 1000 متر به 250 متر است.روش پژوهش: روش پژوهش در مقاله حاضر از نظر هدف، کاربردی و از نظر روش انجام کار مبتنی بر روابط همبستگی است.یافتهها: عملکرد روشهای ریزمقیاسسازی حرارتی DisTRAD و TsHARP توسط شاخص میانگین مربعات خطا (RMSE) و میانگین انحراف خطا (MBE) ارزیابی شدند. بررسی نتایج حاکی از آن است که بین دادههای تصاویر ریزمقیاسشده دمای سطح زمین توسط روشهای DisTRAD و TsHARP با دادههای تصویر مادیس 1000 متری از سنجنده Terra، مقدار RMSE برای تاریخ 13 اردیبهشت 1398 به ترتیب برابر با 77/1 و 7/1 درجه سانتیگراد و R2 حدود 53 درصد و برای 25 مهر 1398 به ترتیب برابر با 44/2 و 38/2 درجه سانتیگراد و R2 حدود 85 درصد است.نتایج: بررسی نتایج ماهوراههای ترا و آکوا، بهطور کلی نشاندهنده برتری نتایج ماهواره ترا نسبت به آکوا است. دلیل اصلی آن میتواند ساعت متفاوت گذر ماهوارهها از منطقه مورد مطالعه باشد. همچنین با توجه به اینکه تغییرات رطوبتی خاک و پهنههای آبی نظیر رودخانه کارون از عوامل اصلی ایجاد خطاست، لذا استفاده از این روشهای ریزمقیاسسازی تنها در مناطق فاقد تغییرات زیاد رطوبتی توصیه میشود.
Background and Aim: Land surface temperature (LST) is a key boundary condition in many ground-based modeling schemes based on remote sensing. Previous literature has shown that LST products from satellite imagery can be used to detect land surface changes, including urbanization, deforestation and desertification, which can improve our ability to monitor surface changes continuously. The objective of the present study was to evaluate the results of DisTRAD and TsHARP thermal sharpening methods to downscale the spatial resolution of MODIS LST from 1000 m to 250 m.Method: The research method in the present article is applied in terms of purpose and based on correlation relations in terms of method of work.Results: The performance of DisTRAD and TsHARP thermal downscaling methods were evaluated by the Root Mean Square Error (RMSE) and the Mean Bias Error (MBE) between the downscaled and original LSTs. Statistical analysis showed that the RMSE between the downscaled images of DisTRAD and TsHARP methods with the original LST (1000 m (terra)) for 3 May 2019 were found to be 1.77 ° C and 1.7 ° C, respectively, whereas the R2 were found to be about 53% and for 17 October 2019, the RMSE were found to be 2.44 ° C and 2.38 ° C respectively, whereas the R2 were found to be about 85%.Conclusion: The study of the results of Terra and Aqua satellites generally shows the superiority of Terra satellite results over Aqua. The main reason could be the different passage times of the satellites from the study area. Since that changes in soil moisture and water body such as the Karun River are common sources of error, so the use of these methods is recommended only in areas without excessive changes in moisture.
References:
Agam, N., Kustas, WP., Anderson, MC. and Li, F. 2007. A vegetation index-based technique for spatial sharpening of thermal imagery. Remote Sens Environ.107:545–558.
Berni, J.A., Zarco-Tejada, P.J., Suárez, L. and Fereres, E. 2002. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 47: 722–738.
Choudhury, B. J., Ahmed, N. U., Idso, S. B., Reginato, R. J. and Daughtry, C. S. T. 1994. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sensing of Environment.50: 1−17.
Deilami, K., Kamruzzaman, M. and Liu, Y. 2018. Urban heat island effect: A systematic review of spatio-tempora factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 67: 30–42.
Dominguez, A., Kleissl, J., Luvall, J.C. and Douglas, L. 2011. High-Resolution Urban Thermal Sharpener (HUTS). Remote Sensing of Environment. 115 (7): 1772
Essa, W., Verbeiren, B., van der Kwast, J., Voorde, T.V. and Batelaan, O. 2012. Evaluation of the DisTrad thermal sharpening methodology for urban areas. International Journal of Applied Earth Observation and Geoinformation. 19: 163–17.
Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J., Hook, S. and Kahle, A.A.B. 1998. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 36: 1113–1126.
Gao, F., Kustas, W.P. and Anderson, M.C. 2012. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 4:3287-3319.
Gerhards, M., Schlerf, M., Mallick, K. and Udelhoven, T. 2019. Challenges and Future Perspectives of Multi-Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review. Remote Sens. 11:1240.
He, B.J., Zhao, Z.Q., Shen, L.D., Wang, H.B. and Li, L.G. 2019. An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image. Sustain. Cities Soc. 44: 416–427.
Inamdar, A.K., French, A., Hook, S., Vaughan, G. and Luckett, W. 2008. Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States. J. Geophys.Res. 113:D07107.
Kustas, W.P., Norman, J.M., Anderson, M.C. and French, A.N.2003. Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship. Remote Sens Environ. 85:429–440.
Li, Z.L., Tang, B.H., Wu, H., Ren, H., Yan, G. and Wan, Z. 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 131: 14–37.
Mukherjee, S., Joshi, P. K. and Garg, R. 2015. Evaluation of LST downscaling algorithms on seasonal thermal data in humid subtropical regions of India. International Journal of Remote Sensing. 36(10):2503-2523.
Purbantoro, B., Aminuddi, J., Manago, N. and Toyoshima, K. 2019. Comparison of Aqua/Terra MODIS and Himawari-8 Satellite Data on Cloud Mask and Cloud Type Classification Using Split Window Algorithm. Remote Sens. 11(24): 2944.
Raoufi, R. and Beighley, E. 2017. Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature. Remote Sens. 9: 1138.
Su, Z. 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6:85–100.
Sousa, D. and Small, C. 2019. Mapping and Monitoring Rice Agriculture with Multisensor Temporal Mixture Models.Remote Sens. 11:181.
Sobrino, J.A., Del Frate, F., Drusch, M., Jiménez-Muñoz, J.C., Manunta, P. and Regan, A. 2016. Review of thermal infrared applications and requirements for future high-resolution sensors. IEEE Trans. Geosci. Remote Sens. 54:2963–2972.
Sharma, K.V., Khandelwal, S. and Kaul, N. 2020. Downscaling of Coarse Resolution Land Surface Temperature Through Vegetation Indices Based Regression Models. Applications of Geomatics in Civil Engineering. 625-636.
Yang, Y., Cao, C., Pan, X., Li, X. and Zhu, X. 2017. Downscaling Land Surface Temperature in an Arid Area by Using Multiple Remote Sensing Indices with Random Forest Regression. Remote Sens. 9: 789
_||_