Molecular docking, anti-inflammatory, antimicrobial and antioxidant evaluation of Pterospermum rubiginosum B. Heyne
Subject Areas : Medicinal and Herbal PlantsRajamohanan Anish 1 , Fathima Rumaisa 2 , Thankamani Aswathy 3 , Velappan Nair Kalpana 4 , Arun Rauf 5 *
1 - Department of Biochemistry, University of Kerala, Trivandrum, India
2 - Department of Biochemistry, University of Kerala, Trivandrum, India
3 - Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, India
4 - Department of Biochemistry, University of Kerala, Trivandrum, India
Kerala, India.
5 - Department of Biochemistry, University of Kerala, Trivandrum, India
Keywords: Anti-inflammatory, Malvaceae, Bark extract, <i>Pterospermum rubiginosum</i> B. Heyne, Molecular docking, RAW 264.7cells,
Abstract :
Pterospermum rubiginosum B.Heyne ex G.Don (PR) is a traditional medicinal plant used by the tribal people of the Western Ghats to treat bone fractures, inflammation, and sprain. Being an under-explored medicinal plant, the mechanism behind the anti-inflammatory activity of PR is unknown to the scientific community. FTIR analysis was done to recognize the functional groups in PR bark extract, and LCMS elucidated the phytochemical characterization. Molecular docking studies showed an excellent ligand and protein (inflammatory mediators) binding and their interactive mechanism. Total phenolic and total flavonoid contents were found to be 46.7 and 37.4 g/100 g for PRME. PRME showed hydrogen peroxide and DPPH (1,1diphenyl-2-picryl hydrazyl) radical scavenging activity with IC50 values of 48.33 and 42.70 µg/mL, respectively. Gene expression study of COX-1 and COX-2 enzymes confirmed the anti-inflammatory activity of PRME. The present study justifies the potential use of PR in the traditional medicine as an anti-inflammatory agent.
Bailly, C., 2021. Bioactive biflavonoids from Wikstroemia indica (L.) C.A. Mey. (Thymelaeaceae): a review. Trends Phytochem. Res. 5(4), 190-198.
Ballesteros-Vivas, D., Álvarez-Rivera, G., Ibáñez, E., Parada-Alfonso, F., Cifuentes, A., 2019. A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compound. J. Chromatogr. A 1584, 155-164.
Bandaranayake, W.M., 2006. Quality control, screening, toxicity, and regulation of herbal drugs, In: Ahmad, I., Aqil, F., Owais, M. (Eds.), Modern Phytomedicine. Turning Medicinal Plants into Drugs. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 25-57.
Bongmo, V.L.L., Happi, G.M., Tabekoueng, B., Lateef, M., François, A., Waffo, K., Ali, M.S., Choudhary, M.I., Nouga, B., Wansi, J.D., 2022. Phytochemical compounds of Guibourtia ehie and their antioxidant, urease and α-glucosidase inhibitory activities. Nat. Resour. Hum. Heal. 1-7.
Dymerski, T., Namieśnik, J., Leontowicz, H., Leontowicz, M., Vearasilp, K., Martinez-Ayala, A.L., González-Aguilar, G.A., Robles-Sánchez, M., Gorinstein, S., 2016. Chemistry and biological properties of berry volatiles by two-dimensional chromatography, fluorescence and Fourier transform infrared spectroscopy techniques. Food Res. Int. 83, 74-86.
Eken, A., Ünlü-Endirlik, B., Baldemir, A., İlgün, S., Soykut, B., Erdem, O., Akay, C., 2016. Antioxidant capacity and metal content of Physalis peruviana L. fruit sold in markets. J. Clin. Anal. Med. 7, 291-294.
Gülçin, I., Alici, H.A., Cesur, M., 2005. Determination of in vitro antioxidant and radical scavenging activities of propofol. Chem. Pharm. Bull. 53, 281-285.
Indrayanto, G., Putra, G.S., Suhud, F., 2021. Validation of in-vitro bioassay methods: Application in herbal drug research, in: Profiles of drug substances, excipients and related methodology. Elsevier Inc., pp. 273-307.
Kasali, M.F., Mahano, A.O., Bwironde, F.M., Amani, A.C., Mangambu, J.D., Nyakabwa, D.S., Wimba, L.K., Tshibangu, D.S.T., Ngbolua, K.N., Kambale, J.K., Mpiana, P.T., 2013. Ethnopharmacological survey of plants used against diabetes in Bukavu city (D.R. Congo). J. Ethnobiol. Tradit. Med. 119, 538–546.
Kasali, F.M., Kadima, J.N., Peter, E.L., Mtewa, A.G., Ajayi, C.O., Tusiimire, J., Tolo, C.U., Ogwang, P.E., Weisheit, A., Agaba, A.G., 2021. Antidiabetic medicinal plants used in Democratic Republic of Congo : A critical review of ethnopharmacology and bioactivity data. Front. Pharmacol. 12, 7579090. DOI: org/10.3389/fphar.2021.757090.
Kasali, F.M., Tuyiringire, N., Peter, E.L., Ahovegbe, L.Y., Ali, M.S., Tusiimire, J., Ogwang, P.E., Kadima, N.J., Agaba, A.G., 2022. Chemical constituents and evidence-based pharmacological properties of Physalis peruviana L .: An overview. J. Herbmed Pharmacol. 1, 35-47.
Kemayou, G.P.M., Kache, S.F., Dzouemo, L.C., Happi, G.M., Kouam, S.F., Tchouankeu, J.C., 2021. Phytochemistry, traditional uses, and pharmacology of the genus Ekebergia (Meliaceae): A review. Trends Phytochem. Res. 5, 110–125.
Khan, K., Firdous, S., Ahmad, A., Fayyaz, N., Nadir, M., Rasheed, M., Faizi, S., 2016. GC-MS profile of antimicrobial and antioxidant fractions from Cordia rothii roots. Pharm. Biol. 54, 2597-2605.
Kumar, S., Pandey, A.K., 2013. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, DOI: org/10.1155/2013/162750.
Kurihara, H., Sasaki, M., Hatano, M., 1994. A new screening method for glucosidase inhibitors and its application to algal extracts. Fish. Sci. 60, 759-761.
Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H., Chen, S., 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21, DOI: org/10.3390/molecules21101374.
Majcher, M.A., Scheibe, M., Jeleń, H.H., 2020. Identification of odor active compounds in Physalis peruviana L. Molecules 25, DOI: org/10.3390/molecules25020245.
Mayorga, H., Knapp, H., Winterhalter, P., Duque, C., 2001. Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.). J. Agric. Food Chem. 49, 1904-1908.
Medina-Pérez, G., Zaldívar-Ortega, A.K., Cenobio-Galindo, A. de J., Afanador-Barajas, L.N., Vieyra-Alberto, R., Estefes-Duarte, J.A., Campos-Montiel, R.G., 2019. Antidiabetic activity of cactus acid fruit extracts: Simulated intestinal conditions of the inhibitory effects on α-amylase and α-glucosidase. Appl. Sci. 9, DOI: org/10.3390/app9194066.
Mohammadhosseini, M., Frezza, C., Venditti, A., Sarker, S.D., 2021a. A systematic review on phytochemistry, ethnobotany and biological activities of the genus Bunium L. Chem.
Biodivers. 18, e2100317. DOI: org/10.1002/cbdv.202100317.
Mohammadhosseini, M., Venditti, A., Frezza, C., Serafini, M., Bianco, A., Mahdavi, B., 2021b. The genus Haplophyllum Juss.: Phytochemistry and bioactivities—A review.
Molecules 26, 4664. DOI: org/10.3390/molecules26154664.
Mohammed, Z.H., Ibraheem, R.M., 2015. Antioxidant activity of methanol extracts of Arum maculatum L. and Physalis peruviana L. plants. Ibn Al-Haitham J. Pure Appl. Sci. 28, 1-7.
Peter, K.K., Zipporah, N., Francis, M.N., John, T., 2020. In vitro antiplasmodial, cytotoxicity assay and partial chemical characterization of Kenyan Physalis peruviana L. (Solanaceae family) extracts. J. Med. Plants Res. 14, 73-80.
Pillai, G.G.K., Bharate, S.S., Awasthi, A., Verma, R., Mishra, G., Singh, A.T., Jaggi, M., Mithal, A., Vishwakarma, R.A., 2017. Antidiabetic potential of polyherbal formulation DB14201: Preclinical development, safety and efficacy studies. J. Ethnopharmacol. 197, 218-230.
Pinto, M.D.S., Ranilla, L.G., Apostolidis, E., Lajolo, F.M., Genovese, M.I., Shetty, K., 2009. Evaluation of antihyperglycemia and antihypertension potential of native Peruvian fruits using In vitro models. J. Med. Food 12, 278-291.
Ramadan, M.M., El-Ghorab, A.H., Ghanem, K.Z., 2015. Volatile compounds, antioxidants, and anticancer activities of Cape gooseberry fruit (Physalis peruviana L.): an in-vitro study. J. Arab Soc. Med. Res. 10, 56-64.
Ramadan, M.F., Möersel, J.T., 2003. Oil goldenberry (Physalis peruviana L.). J. Agric. Food Chem. 51, 969-974.
Ramadan, M.F., Möersel, J.T., 2007. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. J. Sci. Food Agric. 87, 452-460.
Rodrigues, E., Rockenbach, I.I., Cataneo, C., Gonzaga, L.V., Chaves, E.S., Fett, R., 2009. Minerals and essential fatty acids of the exotic fruit Physalis peruviana L. Ciência e Tecnol. Aliment. 29, 642-645.
Sathasivampillai, S. V., Rajamanoharan, P.R.S., Munday, M., Heinrich, M., 2017. Plants used to treat diabetes in Sri Lankan Siddha Medicine - An ethnopharmacological review of historical and modern sources. J. Ethnopharmacol. 198, 531-599.
Susmita, D., Sukriti, D., Bratati, D., 2012. In vitro inhibition of key enzymes related to diabetes by the aqueous extracts of some fruits of West Bengal, India. Curr. Nutr. Food Sci. 8, 19-24.
Vega-Gálvez, A., López, J., Torres-Ossandón, M.J., Galotto, M.J., Puente-Díaz, L., Quispe-Fuentes, I., Di Scala, K., 2014. High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). LWT - Food Sci. Technol. 58, 519-526.
Venditti, A., 2018. What is and what should never be: artifacts, improbable phytochemicals, contaminants and natural products. Nat. Prod. Res. 34, 1014-1031.
Yilmaztekin, M., 2014. Analysis of volatile components of cape gooseberry (Physalis peruviana L.) grown in turkey by HS-SPME and GC-MS. Sci. World J. 2014, DOI: org/10.1155/2014/796097.