A Method for Finding LR Fuzzy Eigenvectors of Real Symmetric Matrix
Subject Areas : Transactions on Fuzzy Sets and SystemsXinyi Duan 1 , Hangru Lin 2 , Xiaobin Guo 3
1 - Department of Mathematics and Statistics, Northwest Normal University, Lanzhou, China.
2 - Department of Mathematics and Statistics, Northwest Normal University, Lanzhou, China.
3 - Department of Mathematics and Statistics, Northwest Normal University, Lanzhou, China.
Keywords: Fuzzy eigenvector, Fuzzy number, Fuzzy linear system, Matrix computation.,
Abstract :
In this paper, the calculation methods of the real eigenvalues and LR fuzzy eigenvectors of clear real symmetry matrices are deeply considered. The original fuzzy feature problem is extended by using the arithmetic algorithm of LR fuzzy numbers into a simple feature problem with a high-order clear real symmetry matrix. We discuss two cases: (a) λ is a non-negative unknown eigenvalue; (b) λ is a negative unknown eigenvalue. We established two computational models and proposed an algorithm for finding the fuzzy eigenvectors of the true symmetry matrix. Some numerical examples are used to illustrate our proposed method.
[1] Zadeh LA. Fuzzy Sets. Information Control. 1965; 8: 338-353. DOI: https://doi.org/10.1016/S0019- 9958(65)90241-X
[2] Zimmermann HJ. Fuzzy Set Theory and its Applications. Kluwer Academic Press; 1991.
[3] Dubois D, Prade H. Theory and application, Fuzzy Sets and Systems. Academic Press, New York, 1980.
[4] Nahmias S. Fuzzy variables. Fuzzy Sets and Systems. 1978; 1(2): 97-110. DOI: https://doi.org/10.1016/0165-0114(78)90011-8
[5] Kauffman A, Gupta MM. Introduction to fuzzy arithmetic: Theory and application. Van Nostrand Reinhold, New York, 1991.
[6] Goetschel Jr R, Voxman W. Elementary calculus. Fuzzy Sets and Systems. 1986; 18(1): 31-43. DOI: https://doi.org/10.1016/0165-0114(86)90026-6
[7] Wu CX, Ma M. Embedding problem of fuzzy number space: Part I. Fuzzy Sets and Systems. 1991; 44: 33-38. DOI: https://doi.org/10.1016/0165-0114(91)90030-T
[8] Wu CX, Ma M. Embedding problem of fuzzy number space: Part III. Fuzzy Sets and Systems. 1992; 46(2): 281-286. DOI:https://doi.org/10.1016/0165-0114(92)90142-Q
[9] Friedman M, Ming M, Kandel A. Fuzzy linear systems. Fuzzy Sets and Systems. 1998; 96: 201-209. DOI: https://doi.org/10.1016/S0165-0114(96)00270-9
[10] Allahviranloo T. Numerical methods for fuzzy system of linear equations. Applied Mathematics and Computation. 2004; 155(2) : 493-502. DOI:https://doi.org/10.1016/S0096-3003(03)00793-8
[11] Allahviranloo T, Ghanbari M. A new approach to obtain algebraic solution of interval linear systems. Soft Computing. 2012; 16: 121-133. DOI:https://doi.org/10.1007/s00500-011-0739-7
[12] Allahviranloo T, Hooshangian L. A method to find fuzzy eigenvalues and fuzzy eigenvectors of fuzzy matrix. Neural Computing and Applications. 2013; 23: 1159-1167. DOI:https://doi.org/ 10.1007/s00521- 012-1062-7
[13] Allahviranloo A, Hosseinzadeh Lotfi F, Khorasani Kiasari M, Khezerloo M. On the fuzzy solution of LR fuzzy linear systems. Applied Mathematical Modelling. 2013; 37(3): 1170-1176. DOI:https://doi.org/10.1016/j.apm.2012.03.037
[14] Guo X, Liu K. Near zero fuzzy solution of fully fuzzy linear systems. Journal of Intelligent & Fuzzy Systems. 2023; 44(5): 80438052. DOI: https://doi.org/10.3233/JIFS-222421
[15] Malkawi G, Ahmad N, Ibrahim H. An algorithm for a positive solution of arbitrary fully fuzzy linear system. Computational Mathematics and modeling. 2015; 26(3): 436-465. DOI: https://doi.org/10.1007/s10598-015-9283-0
[16] Mosleh M, Otadi M. A discussion on Calculating fuzzy inverse matrix using fuzzy linear equation system. Applied Soft Computing. 2015; 28: 511-513. DOI: https://doi.org/10.1016/j.asoc.2014.11.035
[17] Wang G. Li Y. Wen C. On fuzzy n-cell numbers and n-dimension fuzzy vectors. Fuzzy Sets and Systems. 2007; 158(1): 71-84. DOI: https://doi.org/10.1016/j.fss.2006.09.006
[18] Gong Z, Guo X. Inconsistent fuzzy matrix equations and its fuzzy least squares solutions. Applied Mathematical Modelling. 2011; 35(3): 1456-1469. DOI: https://doi.org/10.1016/j.apm.2010.09.022
[19] Gong Z, Guo X, Liu K. Approximate solution of dual fuzzy matrix equations. Information Sciences. 2014; 266: 112-133. DOI: https://doi.org/10.1016/j.ins.2013.12.054
[20] Guo X, Han Y. Further investigation to dual fuzzy matrix equation. Journal of Intelligent & Fuzzy Systems. 2017; 33(4): 2617-2629. DOI: https://doi.org/10.3233/JIFS-17072
[21] Guo X, Shang D. Solving LR fuzzy linear matrix equation. Iranian Journal of Fuzzy Systems. 2019; 16(5): 33-44. DOI:https://doi.org/10.22111/IJFS.2019.4905
[22] Guo X, Zhuo Q. Perturbation analysis of fully fuzzy linear system. Journal of Intelligent & Fuzzy Systems. 2023; 44(4): 5589-5599. DOI: https://doi.org/10.3233/JIFS-222392
[23] Buckley J.J. Fuzzy eigenvalues and input-output analysis. Fuzzy Sets and Systems. 1990; 34: 187-195. DOI: https://doi.org/10.1016/0165-0114(90)90158-3
[24] Chiao K. Generalized fuzzy eigenvalue problems. Tamsui Oxford Journal of Mathematical Sciences. 1998; 14: 31-37.
[25] Theodorou Y, Drossos C. Correspondence analysis with fuzzy data: The fuzzy eigenvalue problem. Fuzzy Sets and Systems. 2007; 158(7): 704-721. DOI: https://doi.org/10.1016/j.fss.2006.11.011
[26] Tian Z. Fuzzy eigenvectors of real matrix. Journal of Mathematics Research. 2010; 2(3): 103-108. DOI: https://doi.org/10.5539/JMR.V2N3P103
[27] Hu ML. Matrix computation and its applications, Beijing: Science press, 1 (2008). Science press, Beijing; 2008.