ارائه یک فرآیند بهینه ناحیه بندی کبد در تصاویر MRI با استفاده از مدل جریان آب وفقی
محورهای موضوعی : مهندسی پزشکی- بیوالکتریکمرجان حیدری 1 , مهدی تقی زاده 2 * , حسن معصومی 3 , مرتضی ولی زاده 4
1 - دانشکده مهندسي برق و کامپیوتر - واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ايران
2 - دانشکده برق و کامپیوتر، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران
3 - دانشکده مهندسي برق و کامپیوتر - واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ايران
4 - دانشکده برق و کامپیوتر، دانشگاه ارومیه، ارومیه، ایران
کلید واژه: ناحیه بندی کبد , جریان آب وفقی, تصویر MRI, طبقه بندی نواحی,
چکیده مقاله :
ناحیه بندی کبد در تصاویر پزشکی، همچنان به عنوان یک چالش در سیستم های تشخیص کامپیوتری محسوب می شود. در این مقاله یک الگوریتم بهینه بر اساس مدل جریان آب وفقی جهت ناحیه بندی، معرفی می شود. این الگوریتم ابتدا تصویر را به وسیله یک تابع تبدیل طراحی شده بر اساس تابع توزیع احتمال سطوح روشنایی پیکسلهای کبد پردازش می کند تا ناحیه کبد را از بقیه بخش ها، متمایز کند. سپس به کمک الگوریتم بارش باران که بر اساس اطلاعات مکانی و سطوح روشنایی کبد کنترل می شود، نواحی احتمالی کبد استخراج و در ادامه نواحی محتمل کبدی با یک شبکه عصبی پرسپترون جند لایه و با استفاده از ویژگیهای شکل و بافت، طبقه بندی می گردند. طبقه بندی نواحی به جای پیکسل ها، باعث افزایش کارایی الگوریتم شده است. نتایج تجربی حاصل شده، عملکرد به مراتب مناسب تری در قیاس با الگوریتم های ارزیابی دیگررا نشان می دهد.
Liver segmentation in medical images is still considered as a challenge in computer diagnosis systems. In this paper, an optimal algorithm based on the adaptive water flow model for segmentation is introduced. This algorithm first processes the image by means of a transfer function designed based on the probability distribution function of the brightness levels of the liver pixels to distinguish the liver region from the rest of the parts. Then, with the help of the rainfall algorithm, which is controlled based on the spatial information and light levels of the liver, possible areas of the liver are extracted, and further, the possible areas of the liver are classified with a layered perceptron neural network, using shape and texture features. Classification of areas instead of pixels has increased the efficiency of the algorithm. The obtained experimental results show a far more appropriate performance in comparison with other evaluation algorithms
[1] Bereciartua, A., Picon, A., Galdran, A. and Iriondo, P.: “3D active surfaces for liver segmentation in multisequence MRI images”, Computer Methods and Programs in Biomedicine, 2016, 132, pp.149-160.
[2] Massoptier, L. and Casciaro, S.: “Fully automatic liver segmentation through graph-cut technique”, In 2007 29th Annual international conference of the IEEE engineering in medicine and biology society, 2007, pp. 5243-5246.
[3] Prasantha, H.S., Shashidhara, H.L., Murthy, K.N.B. and Madhavi, L.G.: “Medical image segmentation”, International Journal on Computer Science and Engineering, 2010, 2(4), pp.1209-1218.
[4] Lebre, M.A., Vacavant, A., Grand-Brochier, M., Rositi, H., Strand, R., Rosier, H., Abergel, A., Chabrot, P. and Magnin, B.: “A robust multi-variability model based liver segmentation algorithm for CT-scan and MRI modalities”, Computerized Medical Imaging and Graphics, 2019, 76, pp.101635.
[5] Sojar, V., Stanisavljević, D., Hribernik, M., Glušič, M., Kreuh, D., Velkavrh, U. and Fius, T.: “Liver surgery training and planning in 3D virtual space”, In International Congress Series, 2004, 1268, pp. 390-394. Elsevier.
[6] López-Mir, F., Naranjo, V., Angulo, J., Alcañiz, M. and Luna, L.: “Liver segmentation in MRI: A fully automatic method based on stochastic partitions” ,Computer methods and programs in biomedicine, 2014, 114(1), pp.11-28.
[7] Gloger, O., Kühn, J., Stanski, A., Völzke, H. and Puls, R.:“A fully automatic three-step liver segmentation method on LDA-based probability maps for multiple contrast MR images”. Magnetic Resonance Imaging, 2010, 28(6), pp.882-897.
[8] Liu, H., Tang, P., Guo, D., Liu, H., Zheng, Y. and Dan, G.: “Liver MRI segmentation with edge-preserved intensity inhomogeneity correction”, Signal, Image and Video Processing, 2018, 12(4), pp.791-798.
[9] Said, S., Mostafa, A., Houssein, E.H., Hassanien, A.E. and Hefny, H.: “September. Moth-flame optimization based segmentation for MRI liver images”, In International Conference on Advanced Intelligent Systems and Informatics, 2017, pp. 320-330, Springer.
[10] Mostafa, A., Hassanien, A.E., Houseni, M. and Hefny, H.: “Liver segmentation in MRI images based on whale optimization algorithm”, Multimedia Tools and Applications, 2017, 76(23), pp.24931-24954.
[11] Huynh, H.T., Karademir, I., Oto, A. and Suzuki, K.: “Liver volumetry in MRI by using fast marching algorithm coupled with 3D geodesic active contour segmentation”, In Computational Intelligence in Biomedical Imaging, 2014, pp. 141-157, Springer, New York, NY.
[12] Masoumi, H., Behrad, A., Pourmina, M.A. and Roosta, A.: “Automatic liver segmentation in MRI images using an iterative watershed algorithm and artificial neural network”, Biomedical signal processing and control, 2012, 7(5), pp.429-437.
[13] Yuan, Z., Wang, Y., Yang, J. and Liu, Y.: “A novel automatic liver segmentation technique for MR images”, In 2010 3rd International Congress on Image and Signal Processing, 3, pp. 1282-1286, IEEE.
[14] Gloger, O., Toennies, K. and Kuehn, J.P.: “May. Fully automatic liver volumetry using 3D level set segmentation for differentiated liver tissue types in multiple contrast MR datasets”, In Scandinavian Conference on Image Analysis, 2011 , pp. 512-523, Springer, Berlin, Heidelberg.
[15] Platero, C., Gonzalez, M., Tobar, M.C., Poncela, J.M., Sanguino, J., Asensio, G. and Santas, E.:“ Automatic method to segment the liver on multi-phase MRI”, In Computer Assisted Radiology and Surgery (CARS) 22nd International Congress and Exhibition, 2008.
[16] Takenaga, T., Hanaoka, S., Nomura, Y., Nemoto, M., Murata, M., Nakao, T., Miki, S., Yoshikawa, T., Hayashi, N. and Abe, O.: “Four-dimensional fully convolutional residual network-based liver segmentation in Gd-EOB-DTPA-enhanced MRI”, International journal of computer assisted radiology and surgery, 2019, 14(8), pp.1259-1266.
[17] Kim, I.K., Jung, D.W. and Park, R.H.: “Document image binarization based on topographic analysis using a water flow model”, Pattern Recognition, 2002, 35(1), pp.265-277.
[18] Oh, H.H., Lim, K.T. and Chien, S.I.: “An improved binarization algorithm based on a water flow model for document image with inhomogeneous backgrounds”, Pattern Recognition ,2005, 38(12), pp.2612-2625.
[19] Otsu, N.: “A threshold selection method from gray-level histograms”, IEEE transactions on systems, man, and cybernetics, 1979, 9(1), pp.62-66.
[20] Haralick, R.M., Shanmugam, K. and Dinstein, I.H.: “ Textural features for image classification”, IEEE Transactions on systems, man, and cybernetics, 1973, (6), pp.610-621.
[21] Hagan, M.T., Demuth, H.B. and Beale, M.: “Neural network design”, 1997, PWS Publishing Co..