تشخیص آریتمی های قلبی مبتنی بر ویژگی های عمیق بهینه شده
محورهای موضوعی : مهندسی پزشکی- بیوالکتریکنگار جنتی 1 , مهدی تقی زاده 2 * , امید مهدی یار 3 , بابک غلامی 4
1 - دانشکده فنی مهندسی - واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ايران
2 - دانشکده فنی مهندسی - واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ايران
3 - دانشکده فنی مهندسی - واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ايران
4 - گروه برق - واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ايران
کلید واژه: سیگنال ECG, آریتمی های قلبی, SVM, شبکه عصبی,
چکیده مقاله :
براساس گزارش سازمان بهداشت جهانی بیماری های قلبی امروزه مهمترین عامل تهدید کننده زندگی انسان به حساب میآیند. بیماریهای قلبی عروقی نخستین علت مرگ و میر بیماری در دنیا هستند و طبق آخرین گزارشات 46% موارد مرگ و میر را به خود اختصاص داده اند. به طور متوسط روزانه 200 نفر در اثر بیماری قلبی جان خود را از دست میدهند در حالی که 25% موارد، قابل احیا و برگشت پذیر میباشند. تشخیص سریع، به موقع و دقیق و مراقبت ویژه پزشکی از بیماران مبتلا به این امراض میتواند تا حد زیادی از مرگ ناگهانی و مشکلات بیشتر آنها جلوگیری نماید. با توجه به اینکه ثبت نوار قلب (الکتروکاردیوگرام) روشی آسان، کم هزینه و در عین حال بسیار ثمربخش است، استفاده از الکتروکاردیوگرام و آشنایی با اصول کار، شناخت و تفسیر آن ما را در تشخیص بسیار کمک می کند. سیگنال الکتروکاردیوگرافی مهمترین و اصلی ترین سیگنال وابسته به قلب بوده و دارای پیچیدگی کم در ثبت و پردازش میباشد و برای تشخیص بسیاری از عارضه های قلبی مورد استفاده قرار میگیرد. در این مقاله برای تفکیک و طبقه بندی آریتمیهای قلبی از یادگیری عمیق استفاده شده که با استفاده از انتخاب ویژگی و روش وزن دهی TFCRF، 10 ویژگی عمیق استخراج شده و به عنوان ورودی وارد طبقه بندی کننده میشود و طبقه بندی کننده شبکه عصبی با درصد86/99 به عنوان طبقه بندی کننده برتر انتخاب شده است و آریتمیها را با دقت خوبی از هم تفکیک میکند.
According to the World Health Organization report, cardiovascular diseases are now recognized as the leading cause of human mortality. Cardiovascular diseases, specifically vascular diseases, are the primary cause of death worldwide, accounting for 46% of mortality, according to the latest reports. On average, 200 individuals lose their lives daily due to heart disease, while 25% of cases are reversible and can be resuscitated. Rapid, timely, and accurate diagnosis, along with specialized medical care for patients with these diseases, can significantly prevent sudden death and further complications. Electrocardiogram (ECG) recording is an easy, cost-effective, and highly effective method; therefore, the use of electrocardiography and familiarity with its principles, operation, and interpretation aids in diagnosing heart diseases. The electrocardiographic signal is the most important and fundamental signal related to the heart, with minimal complexity in recording and processing, and is used to diagnose many cardiac conditions. In this article, deep learning is used to differentiate and classify cardiac arrhythmias. Using feature selection and the TFCRF weighting method, 10 deep features are extracted and input into the classifier. A neural network classifier with an accuracy of 86.99% is selected as the top classifier, effectively distinguishing arrhythmias from each other.
[1] R.J. Martis, U. Rajendra Acharya and C.M. Lim, “ECG Beat Classification Using PCA, LDA, ICA and Discrete Wavelet Transform”, Biomedical Signal Processing and Control, vol. 8, pp. 437-448, 2013.
[2] U.R. Acharya, H. Fujita, V.K. Sudarshan, S.L. Oh, M. Adam, and J.E.W. Koh, “Automated detection and localization of myocardial infarction using electrocardiogram: A comparative study of different leads”, Knowledge-Based Systems, vol. 99, pp. 146-156, 2016.
[3] A. Lal, P. Kumar and S. Halder, “Heartbeat Classification Based on Deep Convolutional Neural Network”, 2023 International Conference on Networking and Communications (ICNWC), Chennai, India, 2023, pp. 1-4, doi: 10.1109/ICNWC57852.2023.10127341.
[4] E.D. Beyli, “Combining recurrent neural networks with eigenvector methods for classification of ECG beats”, Digital Signal Processing, vol. 19, issue 2, pp. 320–329, 2009.
[5] S. Chauhan and L. Vig, “Anomaly detection in ECG time signals via deep long short-term memory networks”, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France, 2015, pp. 1-7, doi: 10.1109/DSAA.2015.7344872.
[6] M.K. Das, S. Ari, “ECG Beats Classification Using Mixture of Features”, International Scholarly Research Notices, vol. 2014, p. 14, 2019.
[7] C. Chen, Y. Lin, S. Lee, W. Tsai, T. Huang, Y. Liu, M. Cheng, C. Dai, “Automated ECG classification based on 1D deep learning network Methods”, Methods, vol. 202, pp. 127-135, Jun 2022.
[8] N. Ö. Özcan and F. Gürgen, "Fuzzy Support Vector Machines for ECG Arrhythmia Detection," 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010, pp. 2973-2976, doi: 10.1109/ICPR.2010.728.
[9] R.D. Labati, E. Munoz, V. Piuri and R. Sassi, “Deep-ECG: Convolultional Neural Networks for ECG biometric recognition”, Pattern Recognition Letters, vol. 126, pp. 78-85, Sep. 2019.
[10] A. Sellami, H. Hwang, “A robust deep convolutional neural network with batch-weighted loss for heartbeat
classification”, Expert Systems with Applications, Vol. 122, pp. 75–84, May 2019.
[11] J. Park, K. Lee and K. Kang, “Arrhythmia detection from heartbeat using k-nearest neighbor classifier”, 2013 IEEE International Conference on Bioinformatics and Biomedicine, Shanghai, China, 2013, pp. 15-22, doi: 10.1109/BIBM.2013.6732594.
[12] P. Pławiak, “Novel Genetic Ensembles of Classifiers Applied to Myocardium Dysfunction Recognition Basedon ECG Signals”, Swarm and Evolutionary Computation, vol. 39, pp. 192-208, April 2018.
[13] Ö. Yildirim, “A novel wavelet sequences based on deep bidirectional LSTM network model for ECG signalclassification”, Computers in Biology and Medicine, vol. 96, pp. 189-202, May 2018.