محاسبات ابتدا به ساکن آنتالپی و تأثیر فشار بر خواص الکترونی، الکتریکی و مغناطیسی ترکیب MoS2
محورهای موضوعی : تحقیقات در علوم مهندسی سطح و نانو موادایثار کریم مناحی 1 , آزاده اعظمی 2 * , محمد معرفی رمیله 3
1 - گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2 - گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
3 - گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
کلید واژه: آنتالپی, نظریه تابعی چگالی, MoS2, چگالی حالات, کد کوانتوم اسپرسو, ساختار نواری,
چکیده مقاله :
در کار حاضر به بررسی آثار فشار و آنتالپی بروی ترکیب دی سولفید مولیبدن در چارچوب نظریۀ تابعی چگالی و با کد کوانتوم اسپرسو با امواج تخت و پتانسیل تبادلی تقریب شیب تعمیم یافته بار پایسته پرداخته شده است. خواص الکترونی ترکیب برای مقایسه با اعمال فشار رسم و محاسبه شد. ساختار نواری دی سولفید مولیبدن ماهیت نیم رسانایی را با گافی حدود 2/27 الکترون ولت را داد، که گاف به دست آمده بزرگتر از نتایج دیگر پژوهش ها بوده است. چگالی حالت ها برای ترکیب دی سولفید مولیبدن رسم شده است و ماهیت نیم رسانایی ترکیب را تأیید می کند. گاف به دست آمده از چگالی حالت ها با نتایج دیگر کارها سازگاری بیشتری دارد و مقدار آن حدود 1/3 الکترون ولت به دست آمده است. نتایج محاسبات چگالی حالات جزئی نشان داد که نقش اوربیتال d اتم مولیبدن و p اتم گوگرد بیشتر است. در ادامه فشار های مختلف را اعمال شده است. با اعمال فشارهای مثبت ثابت شبکه افزایش می یابد و ابتدا گاف نواری کاهش سپس در یک انرژی کمی افزایش و در ادامه باز کاهش را دارد تا ساختار از ماهیت نیم رسانا به فلز تبدیل گردد. با اعمال فشارهای منفی ثابت شبکه کاهش و گاف نواری کاهش یافته و در همان اعمال فشارهای اولیه از ماهیت نیم رسانایی خارج و به سمت خاصیت فلزی میل کرده است.
[1] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS2: a new direct-gap semiconductor," Physical review letters, 105 (2010) 136805.
[2] E. Singh, P. Singh, K. S. Kim, G. Y. Yeom, and H. S. Nalwa, "Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics," ACS applied materials & interfaces, 11 (2019) 11061-11105.
[3] E. S. Kadantsev and P. Hawrylak, "Electronic structure of a single MoS2 monolayer," Solid state communications, 152 (2012) 909-913.
[4] D. Yang, S. J. Sandoval, W. Divigalpitiya, J. Irwin, and R. Frindt, "Structure of single-molecular-layer MoS2," Physical Review B, 43 (1991) 12053.
[5] B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, et al., "Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution," Journal of the American Chemical Society, 127 (2005)5308-5309.
[6] N. Yaacobi-Gross, M. Soreni-Harari, M. Zimin, S. Kababya, A. Schmidt, and N. Tessler, "Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells," Nature Materials, 10 (2011) 974-979.
[7] H. Wu, R. Yang, B. Song, Q. Han, J. Li, Y. Zhang, et al., "Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water," ACS nano, 5 (2011) 1276-1281.
[8] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature nanotechnology, 6 (2011) 147-150.
[9] T. Jin, J. Kang, E. Su Kim, S. Lee, and C. Lee, "Suspended single-layer MoS2 devices," Journal of Applied Physics, 114 (2013) 164509.
[10] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis Ultrasensitive photodetectors based on monolayer MoS2." Nature nanotechnology, 7 (2013) 497-501.
[11] H. Ying, X. Li, H. Wang, Y. Wang, X. Hu, J. Zhang, et al., "Band structure engineering in MoS2 based heterostructures toward high‐performance phototransistors," Advanced Optical Materials, 8 (2020) 2000430.
[12] P. Giannozzi, S.Baroni, et al; Matteo Calandra; “QUANTUM ESPRESSO: a Modular and OpenSource Software Project for Quantum Simulations of Materials”; J. Phys. Condens. Matt, 21 (2009).
[13] D. Kim, D. Sun, W. Lu, Z. Cheng, Y. Zhu, D. Le, et al., "Toward the growth of an aligned single-layer MoS2 film," Langmuir, 27 (2011) 11650-11653.
[14] K. S. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, et al., "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences, 102 (2005)10451-10453.
[15] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, et al., "Two-dimensional nanosheets produced by liquid exfoliation of layered materials," Science, 331 (2011) 568-571.
[16] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature nanotechnology, 7 (2012) 699-712.
[17] H. Xie, W. Yu, and W. Chen, "MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles," Journal of Experimental Nanoscience, 5 (2010) 463-472.
[18] S. Javaid, M. J. Akhtar, et al, “ Pressure driven spin crossover and isostructural phase transition in LaFeO3,” J. App. Phys, 114 (2013) 2437121-2437127.