بررسی تاثیر عملیات حرارتی آنیلینگ بر خواص ریزساختاری و الکتروشیمیایی آلیاژ آنتروپی بالای FeCoNiCrMn
محورهای موضوعی : تحقیقات در علوم مهندسی سطح و نانو مواد
عرفان بیگدلوی وطن
1
,
مهدی سلیمی
2
*
1 - گروه علوم و مهندسی مواد، دانشکده فنی، دانشگاه زنجان، زنجان، ایران
2 - گروه علوم و مهندسی مواد، دانشگاه آزاد اسلامی زنجان، زنجان، ایران
کلید واژه: آلیاژ آنتروپی بالا, اسپارک پلاسما سینتریگ, محلول جامد FCC, آلیاژسازی مکانیکی,
چکیده مقاله :
در این مطالعه، مخلوط پودری Fe-Co-Ni-Cr-Mn بصورت هماتمی، بهمدت 20 ساعت تحت آسیاب مکانیکی قرار گرفت. سپس مخلوط پودری آسیاب شده آلیاژ آنتروپی بالا (HEA) در دمای 1100 درجه سانتیگراد SPS شد و بهمنظور همگنسازی ریزساختاری از عملیات حرارتی آنیلینگ در دمای 900 درجه سانتیگراد استفادهشد. نتایج ریزساختاری از پودر آسیاب شده نشان داد با افزایش زمان آسیاب از 5 تا 20 ساعت اندازه ذرات کاهش یافته و یک مورفولوژی تقریبا منظمی تشکیل شدهاست. همچنین در 20 ساعت آلیاژسازی مکانیکی محلول جامد تک فاز FCC شد. ساختاری فازی از نمونههای SPS شده و آنیل شده نشان داد برای نمونه SPS شده ساختار دوفازی FCC+BCC تشکیل شدهاست، درحالیکه دراثر عملیات حرارتی ساختار دوفازی به ساختار تک فاز FCC تبدیل شدهاست. نتایج الکتروشیمیایی نشان داد مقاومت در برابر خوردگی نمونه آنیل شده نسبت به نمونه SPS شده بالاتر است، زیرا در نمونه SPS شده ساختار دوفازی منجربه ایجاد پیل گالوانیک بین فازهای FCC و BCC میشود که این رهایش یونهای فلزی را افزایش میدهد در حالیکه در ساختار تک فاز این نوع مکانیسم خوردگی وجود ندارد. مقاومت انتقال بار برای نمونه آنیلشده نسبت به نمونه SPS شده 147 درصد افزایش یافته است.
In this study, a Fe-Co-Ni-Cr-Mn powder mixture with equiatomic composition was subjected to mechanical milling for 20 hours. The milled powder was then consolidated using Spark Plasma Sintering (SPS) at 1100 °C, followed by annealing at 900 °C to achieve microstructural homogenization. Microstructural analysis of the milled powder indicated that increasing the milling time from 5 to 20 hours led to a reduction in particle size and the formation of a nearly uniform morphology. After 20 hours of mechanical alloying, a single-phase solid solution with FCC structure was obtained. Phase characterization of the SPS and annealed samples revealed that the SPS sample exhibited a dual-phase structure of FCC and BCC, while the annealing treatment transformed this dual-phase structure into a single-phase FCC. Electrochemical tests demonstrated that the corrosion resistance of the annealed sample was superior to that of the SPS sample. This improvement is attributed to the dual-phase structure in the SPS sample, which creates galvanic cells between the FCC and BCC phases, leading to increased release of metallic ions. In contrast, the single-phase structure of the annealed sample does not exhibit this corrosion mechanism. Additionally, the charge transfer resistance of the annealed sample increased by ...% compared to the SPS sample.
[1] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy : challenges and prospects, 19 (2016). https://doi.org/10.1016/j.mattod.2015.11.026.
[2] A. Mehta, Y.H. Sohn, Fundamental core effects in transition metal high-entropy alloys:“High-entropy” and “sluggish diffusion” effects, Diffus. Found. 29 (2021) 75–93.
[3] W.-L. Hsu, C.-W. Tsai, A.-C. Yeh, J.-W. Yeh, Clarifying the four core effects of high-entropy materials, Nat. Rev. Chem. (2024) 1–15.
[4] R.K. Nutor, Q. Cao, X. Wang, D. Zhang, Y. Fang, Y. Zhang, J.-Z. Jiang, Phase selection, lattice distortions, and mechanical properties in high‐entropy alloys, Adv. Eng. Mater. 22 (2020) 2000466.
[5] J. Dąbrowa, M. Zajusz, W. Kucza, G. Cieślak, K. Berent, T. Czeppe, T. Kulik, M. Danielewski, Demystifying the sluggish diffusion effect in high entropy alloys, J. Alloys Compd. 783 (2019) 193–207.
[6] A. Takeuchi, T. Wada, H. Kato, Solid solutions with bcc, hcp, and fcc structures formed in a composition line in multicomponent Ir–Rh–Ru–W–Mo system, Mater. Trans. 60 (2019) 2267–2276.
[7] P. Agrawal, S. Shukla, S. Gupta, P. Agrawal, R.S. Mishra, Friction stir gradient alloying: a high-throughput method to explore the influence of V in enabling HCP to BCC transformation in a γ-FCC dominated high entropy alloy, Appl. Mater. Today. 21 (2020) 100853.
[8] S.R. Wilson, M.I. Mendelev, A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals, J. Chem. Phys. 144 (2016).
[9] N. Wang, Q. Cao, X. Wang, S. Ding, D. Zhang, J.-Z. Jiang, Unusual deformation-induced martensitic transformation in Fe-Co-Ni-Cr-Mn high entropy alloy thin films, J. Alloys Compd. 920 (2022) 165959.
[10] Q. Cao, N. Wang, J.-M. Kim, A. Caron, Z. Zhang, H. Zhou, X. Wang, S. Ding, D. Zhang, J.-Z. Jiang, A dual-phase Fe-Co-Ni-Cr-Mn high entropy alloy thin film with superior strength and corrosion-resistance, J. Alloys Compd. 1003 (2024) 175551.
[11] M. Hu, Q.P. Cao, X.D. Wang, D.X. Zhang, J.-Z. Jiang, Tuning nanostructure and mechanical property of Fe–Co–Ni–Cr–Mn high-entropy alloy thin films by substrate temperature, Mater. Today Nano. 15 (2021) 100130.
[12] P. Cui, Z. Bao, Y. Liu, F. Zhou, Z. Lai, Y. Zhou, J. Zhu, Corrosion behavior and mechanism of dual phase Fe1. 125Ni1. 06CrAl high entropy alloy, Corros. Sci. 201 (2022) 110276.
[13] C.-W. Lu, Y.-S. Lu, Z.-H. Lai, H.-W. Yen, Y.-L. Lee, Comparative corrosion behavior of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy and CoCrFeMnNi high-entropy alloy in 3.5 wt% NaCl solution, J. Alloys Compd. 842 (2020) 155824.
[14] X. Huang, Z. Zhan, Q. Zhao, J. Liu, L. Wei, X. Li, Corrosion behavior of a dual-phase FeNiCrCuAl high entropy alloy in supercritical water, Corros. Sci. 208 (2022) 110617.
[15] Y. Shaofeng, Y. Zhang, Y.A.N. Xing, Z. Hang, Enhancement of mechanical properties and corrosion resistance of ultra-fine grain Al0. 4FeCrCo1. 5NiTi0. 3 high-entropy alloy by MA and SPS technologies, Mater. Sci. 25 (2019) 259–264.
[16] R. Song, L. Wei, C. Yang, S. Wu, Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness, J. Alloys Compd. 744 (2018) 552–560.
[17] U.O. Uyor, A.P.I. Popoola, O.M. Popoola, A Study on Microstructural Evolution and Corrosion Behavior of Ti36-Al16-V16-Fe16-Cr16 High-Entropy Alloy Fabricated via Spark Plasma Sintering Technology, Trans. Indian Inst. Met. (2024) 1–11.
[18] N. Jahani, M. Reihanian, K. Gheisari, Alloying and corrosion characteristics of FeNiMnCu-based high entropy alloys, Mater. Chem. Phys. 315 (2024) 128990.
[19] M. Cabeza, I. Feijoo, P. Merino, G. Pena, M.C. Pérez, S. Cruz, P. Rey, Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite, Powder Technol. 321 (2017) 31–43.
[20] B. Sadeghi, P. Cavaliere, Progress of flake powder metallurgy research, Metals (Basel). 11 (2021) 931.
[21] H.X. Sui, M. Zhu, M. Qi, G.B. Li, D.Z. Yang, The enhancement of solid solubility limits of AlCo intermetallic compound by high‐energy ball milling, J. Appl. Phys. 71 (1992) 2945–2949.
[22] K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, K. Niihara, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying, J. Alloys Compd. 495 (2010) 33–38.
[23] A.M. Locci, R. Orrù, G. Cao, Z.A. Munir, Effect of ball milling on simultaneous spark plasma synthesis and densification of TiC–TiB2 composites, Mater. Sci. Eng. A. 434 (2006) 23–29. https://doi.org/https://doi.org/10.1016/j.msea.2006.06.131.
[24] Y. Jiang, R.C. Gu, M. Peterlechner, Y.W. Liu, J.T. Wang, G. Wilde, Impurity effect on recrystallization and grain growth in severe plastically deformed copper, Mater. Sci. Eng. A. 824 (2021) 141786.
[25] L.L. Xiao, Z.Q. Zheng, S.W. Guo, P. Huang, F. Wang, Ultra-strong nanostructured CrMnFeCoNi high entropy alloys, Mater. Des. 194 (2020) 108895.
[26] J.N. Balaraju, V.E. Selvi, V.K.W. Grips, K.S. Rajam, Electrochemical studies on electroless ternary and quaternary Ni–P based alloys, Electrochim. Acta. 52 (2006) 1064–1074. https://doi.org/https://doi.org/10.1016/j.electacta.2006.07.001.
[27] B. Tury, M. Lakatos-Varsányi, S. Roy, Ni-Co alloys plated by pulse currents, Surf. Coatings Technol. 200 (2006) 6713–6717. https://doi.org/10.1016/j.surfcoat.2005.10.008.
[28] A. Amadeh, R. Ebadpour, Effect of cobalt content on wear and corrosion behaviors of electrodeposited Ni-Co/WC nano-composite coatings, J. Nanosci. Nanotechnol. 13 (2013) 1360–1363. https://doi.org/10.1166/jnn.2013.6025.
[29] L. Wang, Y. Lin, Z. Zeng, W. Liu, Q. Xue, L. Hu, J. Zhang, Electrochemical corrosion behavior of nanocrystalline Co coatings explained by higher grain boundary density, Electrochim. Acta. 52 (2007) 4342–4350. https://doi.org/10.1016/j.electacta.2006.12.009.