بررسی امکان استفاده از برخی سویههای سودوموناس فلورسنت جدا شده از فراریشه پسته در کنترل Phytophthora drechsleri عامل بیماری پوسیدگی طوقه و ریشه پسته
محورهای موضوعی :
دو فصلنامه تحقیقات بیماریهای گیاهی
صغری درودی
1
,
حسین علایی
2
,
روح اله صابری ریسه
3
,
امیر حسین محمدی
4
,
محمد گرجی
5
1 - دانش آموخته کارشناسی ارشد گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ولی عصر (عج)رفسنجان
2 - استادیار گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ولی عصر (عج)رفسنجان
3 - استادیار گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ولی عصر (عج)رفسنجان
4 - استادیار پژوهش گروه گیاهپزشکی، موسسسه تحقیقات پسته کشور
5 - مربی مدیریت حفظ نباتات، جهادکشاورزی شهرستان انار
تاریخ دریافت : 1394/05/06
تاریخ پذیرش : 1394/05/06
تاریخ انتشار : 1394/09/01
کلید واژه:
پسته,
بیوکنترل,
سودوموناس,
فیتوفتورا,
ترکیبات ضدقارچی,
چکیده مقاله :
پوسیدگی طوقه و ریشه (انگومک) ازجمله بیماریهای مهم درختان پسته درایران است که روشهای مختلفی از جمله کنترل بیولوژیک برای مدیریت بیماری پیشنهاد شده است. سودومونادهای فلورسنت با توانایی تولید طیف وسیعی از متابولیتهای ثانویه مانند آنتیبیوتیکهای مختلف و مواد تنظیم کننده رشد، از مهمترین باکتریهای خاکزی موثر در کنترل بیولوژیک بیماریهای گیاهی هستند. در این تحقیق اثر آنتاگونیستی سودومونادهای فلورسنت جدا شده از فراریشه درختان سالم و آلوده به گموز پسته برای بیوکنترل Phytophthora drechsleriمورد بررسی قرار گرفت. به همین منظور تعداد 75 جدایه باکتری سودوموناس با توجه به خصوصیت ایجاد نور فلورسنت در محیط KingB جداسازی شدند. از این تعداد، در غربالگری اولیه بر اساس آزمون کشت متقابل روی محیط کشت PDA، هفت جدایه (R41, A16, A17, R14, A41, B21, B13,)، هاله بازدارندگی از رشد میسلیومی بیمارگر P.drechsleri ایجاد کردند. بیشترین هاله بازدارندگی توسط جدایههایR41 (≥15 mm) وA16 (≥5 mm) ایجاد شد که برای کنترل بیماری در آزمونهای گلخانهای انتخاب شدند. جدایههای انتخاب شده در شرایط گلخانه روی نهالهای پسته رقم بادامی ریز زرند مورد بررسی قرار گرفتند. نتایج مطالعات گلخانهای نشان داد که جدایه R41، وزن خشک ریشه را بهطور معنیداری افزایش داد و بیشترین تاثیر در کاهش شدت بیماری داشت.
چکیده انگلیسی:
Phytophthora crown and root rot (Gummosis) is one of the most important diseases of pistachio trees in Iran for management of which various methods such as biocontrol have been recommended. Fluorescent Pseudomonads with the ability of producing a wide range of secondary metabolites such as different antibiotics and plant growth regulatory materials are among the most effective soil borne bacteria in biological control of plant diseases. Antagonistic fluorescent Pseudomonads were isolated from rhizosphere of infected (Gummosis) and healthy pistachio trees and their ability to control Phytophthora dreschleri was evaluated. A total of 75 Pseudomonas isolates emitting fluorescence in King B medium were obtained. In preliminary in vitro screening, seven isolates (R41, A16, A17, R14, A41, B21 and B13) showed inhibitory effect on mycelial growth of P. drechsleri based on bilateral culture test in PDA medium. The most inhibitory effect were obtained by R41 (≥15mm) and A16 (≥5mm) isolates which were selected for greenhouse tests on pistachio seedlings. The results of the greenhouse studies showed that R41 isolate exhibited greatest ability to reduce the disease severity.
منابع و مأخذ:
Ahmadifar F, Rustae A, Shahriari D and Khodakaramian, Gh. 2006. Biological control of cucumber wilt disease caused by Verticillium dahliae by using isolates of Bacillus and Pseudomonas. Agricultural research 6: 65–78
Ahmadzadeh M, Afsharmanesh H, Javan-Nikkhah M and Sharifi-Tehrani A. 2006. Identification of some molecular traits in fluorescent Pseudomonads with antifungal activity. Iranian Journal of Biotechnology 4: 245–253.
Alaei H, Baeyen S, Maes M, Höfte M and Heungens K. 2009. Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR. Journal of Microbiological Methods 76: 136–145.
Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA and Islam MZ. 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancementof rice growth. African Journal of Biotechnology 8: 1247–1252.
Banihashemi Z and Moradi M. 2004. The frequency of isolation of Phytophthora spp. from crown and root of pistachio nut tree and reaction of the crown and root to the causal agent. Iranian Journal of Plant Pathology 40: 57–75 (In Farsi).
Banihashemi Z. 2004. A method to monitor the activity of Phytophthora spp. in the root zone of Pistacia spp. Phytopathology 43: 411–414.
Castric KF and Castric P. 1983. Method for rapid detection of cyanogenic bacteria. Applied and Environmental Microbiology 45: 701–702.
Chet I, Ordentligh R, Shapira R and Ooenheim A. 1990. Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant and Soil 129: 85–92.
9. De Backer M, Alaei H, Van Bockstaele E, Roldan-Ruiz I, Van Der Lee T, Maes M and Heungens K. 2011. Identification and characterization of pathotypes in Puccinia horiana, a rust pathogen of Chrysanthemum x morifolium. European Journal of Plant Pathology 130: 325–338.
Ershad D. 1971. Beitrag zur Kenntnis der Phytophthora. Arten in Iran und ihrer phytopatologischen Bedeutung. Mitteilungen aus der Biologischen Bundesanstalt für Land-und Forstwirtschaft. 140 pp.
Etebarian HR, Sholberg PL, Eastwell KC and Sayler RJ. 2005. Biological control of apple blue mold with Pseudomonas fluorescens. Canadian Journal of Microbiology 51: 591–598.
Fernando D, Kievit TD, Zhang Y, Poritsanos N, Nakkeeran S, Habibian R and Ramarathnam R. 2007. Bacterial secondary metabolites in disease suppression and their mechanisms in plant health promotion. Paper presented at: Second Asian Congress of Mycology and Plant Pathology ‘Microbial Diversity for Asian Prosperity’; 19–22 December; Hyderabad, India.
Fiddaman PJ and Rossall K. 1994. Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. Journal Applied Bacteriology 76: 395–405.
Haas D and Défago G. 2005. Biological control of soil-borne pathogens by fluorescentpseudomonads. Nature Reviews, Microbiology 3: 307–319.
Howell CR and Stipanovic RD. 1980. Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70: 712–715.
16. Hultberg M, Bergstrand K-J, Khalil S and Alsanius B. 2008. Characterization of biosurfactant-producing strains of fluorescent pseudomonads in a soilless cultivation system. Antonie Van Leeuwenhoek 94: 329–334.
Kim DS, Weller DM and Cook RJ. 1997. Population dynamics of Bacillus sp. L324-92R12 and Pseudomonas fluorescens 2-79RN10 in the rhizosphere of wheat. Phytopathology 87:559–564.
King EO, Ward MK and Paney DE. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. Journal of Laboratory and Clinical Medicine 44: 301–307.
Kishore GK, Pande S and Podile AR. 2005. Biological control of collar rot disease with broad- spectrum antifungal bacteria associated with groundnut. Canadian Journal of Microbiology 51: 123–132.
Maurhofer M, Keel C, Haas D and De´fago G. 1995. Influence of plant species on disease suppression Pseudomonas fluorescens strain CHA0 with enhanced antibiotic production. Journal of Plant Pathology 44: 40–50.
Nadine J, Coste De V, Gadkar J and Filion, M. 2010. Verticillium dahlia alters Pseudomonas spp. populations and HCN gene expression in therhizosphere of strawberry. Journal of Microbiology 56: 906–915.
Pal KK, Tilak KVBR, Saxena AK, Dey R and Singh CS. 2001. Suppression of maize root disease caused by Macrophomina phaseolina, Fusarium moniliform and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiology Research 156: 209–223.
Podile AR and Kishore GK. 2006. Plant growth-promoting rhizobacteria. pp. 155–159. In: SS Gnanamanickam (eds). Plant-associated bacteria. Dordrecht, Netherlands: Springer.
Saberi-Riseh R, Hajieghrari B, Rouhani H and Sharifi-Tehrani A. 2004. Effects of inoculum density and substrate type on saprophytic survival of Phytophthora drechsleri, the causal agent of gummosis (crown and root rot) on pistachio in Rafsanjan, Iran. Communications in Agricultural and Applied Biological Sciences 69: 653–659.
Schaad NW, Jones JB and Chum W.2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria (3rd ed.). American Phytopathological Society, Minnesota, USA. 373 p.
Shahidi Bonjar GH, Barkhordar B, Pakgohar N, Aghighi S, Biglary S, Rasid Farrokhi P, Aminaii M, Mahdavi MJ and Aghelizadeh A. 2006. Biological control of Phytophthora drechsleri Tucker, The causal agent of pistachio gummosis, under greenhouse conditions by use of Actinomycetes. Journal of Plant Pathology 5: 20–23.
Sharif Gh and Taghizadeh F. 1960. The disease that is drying pistachio trees. Tehran, Iran: Publication of Agriculture Ministry Extension Organization. 7 p.
Shoda M. 2000. Bacterial control of plant disease. Jurnal of Bioscience and Bioengineering 89: 515–521.
Thomas CE, Indaba T and Cohen Y. 1987. Physiological specialization in Pseudoperonospora cubensis. Phytopathology 77: 1621–1624.
Thrane C, Nielsen TH, Nielsen MN, Sorensen J and Olsson S. 2000. Viscosinamide Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiology Ecology 33: 139–146.
Vasebi Y, Alizadeh A and Safaie N. 2009. Antagonistic mechanisms of bacterial antagonists of soybean charcoal rot in vitro. Journal of Agricultural Science 19: 55–69.
Virgen-Calleros G, Saazar- Godoy M, Olalde- Protagal V, Aguilera- Gomez L and Hernadez- Delgadillo R. 1996. In vitro inhibition of Fusarium and Verticillium sp.with Bacillus circulans. pp. 206–207. In: T Wenhua, RJ Cook and A Rovira (eds). Advances in Biological Control of Plant Disease. Beijing: China Agricultural University Press.
Weller DM and Cook RJ. 1983. Suppression of take-all of wheat by seed treatment with Fluorescent pseudomonads. Phytopathology 73: 463–469.
Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin Bankhead S, Allende Molar R, Bonsall RF, Mavrodi DV and Thomashow LS. 2007. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biology 9: 4–20.
Weller DM. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology26: 379–407.
_||_