بررسی تنوع مورفولوژیک در جمعیت های مختلف ساردین رنگین کمان(Clupeidae: ,Dussomieria acuta) موجود در خلیج فارس و دریای عمان
محورهای موضوعی : مجله پلاسما و نشانگرهای زیستی
1 - گروه علوم جانوری، دانشکده علوم پایه و پزشکی، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
2 - گروه علوم جانوری، دانشکده علوم پایه و پزشکی، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
کلید واژه: Clupeidae, ماهیان سطح زی ریز, تنوع صفات مورفولوژیک, Dussomieria acuta,
چکیده مقاله :
زمینه و هدف: ساردین ماهیان از خانواده شگ ماهیان از نظر اکولوژیک جزو ماهیان سطحزی ریز به شمار آمده و اولین مصرف کنندگان در زنجیره ی تولیدات دریایی می باشند و در صورت صید بی رویه در زنجیره ی غذایی محیط های دریایی اختلال ایجاد شده و کاهش جمعیت سطح زیان دریا مثل تون ماهیان موجب می شود. مطالعه حاضردر راستای بررسی تنوع احتمالی مورفولوژیک و ایجاد زیر جمعیت در حوزه پراکنش گونه ساردین رنگین کمان است. روش کار: طی زمستان90 و بهار91 تعداد 64 عدد ساردین رنگین کمان با روش پرساین دو قایقی از دو منطقه جاسک(دریای عمان) و بندر مقام(خلیج فارس) جمع آوری گردید. با استفاده از وسایل مختلف صفات مورفولوژیک اندازه گیری به روش آنالیز چند متغیره MANOVA، آزمون متغییرهای اصلی PCA و آزمون تفکیک استاندارد با استفاده از نرم افزار SPSS مورد بررسی قرار گرفتند. یافته ها: بررسی های مورفولوژیکی و آنالیز واریانس صفات وجود یک شیب معنی دار در سطح05/0 P≤ درکلیه صفات را بین دو منطقه نشان داد. بر اساس آزمونpost hoc و مولفه های اصلی و تمام صفات به جز طول کل در ایجاد این تنوع دخیل می باشند. از سوی دیگر Claster analysis و آزمون تفکیک استاندارد بر پایه صفات مورفولوژیک دو منطقه را از یک دیگر جدا سازی می کند. نتیجه گیری: تنوع مشاهده شده در صفات مورفولوژیک این گونه می تواند ناشی از استرس شوری و گرما در خلیج فارس و در دسترس بودن بیشتر مواد مغذی و نیز دمای متعادل تر آب و در نتیجه فراجوشی(Upwelling) حاصل از مانسون تابستانه باشد و این گونه به زندگی در مناطق ساحلی و مصب می تواند سبب کم شدن امکان اختلاط جمعیت های مختلف این گونه گردد.
- ایران، ع. 1367. گردآوری و بررسی آمار صید ماهیان سطح زی ساردین ماهیان(در جنوب کشور( در فصل صید(67-1366) مرکز تحقیقات شیلات دریای عمان.
2-سالار پوری، ع. 1392. بررسی وضعیت صید سطح زیان ریز ساردین ماهیان در منطقه جاسک و ارتباط آن با فاکتورهای هیدرولوژیک، مرکز تحقیقات شیلات ایران، پژوهشکده اکولوژی خلیج فارس و دریای عمان.
3.Alabdessalam, T.Z.S. (1995). Marine species of the sultanate of Oman ministry of agriculture and fisheries, Sultanate of Oman. Publication, 412p.
4.AripinI, E.P., Showers, A.T. (2000). Population parameters of small pelagic fishes caught off Tawi-Tawi, Philippins. Nega, 23(4); 21-27.
5.Avsar, D. (1994). Stock differentiation study of the sprat off the southern coast of the Black Sea. Fisheries Research, 19;363-378.
6.Carvalho, G.R., Hauser, L. (1995). Molecular genetics and the stock concept in fisheries .G.R. Carvalho and T.J. Pitcher.(Eds.), Molecular Genetics in Fisheries. London:Chapman&Hall, 55-80.
7.Cemal, TURAN. (1999). A note on the examination of morphometric differentiation among fish populations: the truss system. Tr. J. of Zoology, 23; 259-263
8.Clayton, J. W. (1981). The stock concept and the uncoupling of organismal and molecular evolution. Can. J. Fish. Aquat. Sci. 38; 1515- 1522.
9.Cole, J., Mc Glade J. (1998). Clupeoid population variability, The environment and satellite imagery in coastal upwelling. Reviews in fish biology and Fishery, 46;1-45.
10.Corti, M., Thorpe, R. S., Sola, L., Sbordoni, V., Cataudella, S. (1988). Multivariate morphometrics in aquaculture: a case study of six stocks of the common carp(Cyprinus carpio) from Italy. Can. J. Fish. Aquat. Sci. 45; 1548-1554.
11.Emara, H.I. (1990). Study on oxygen and phosphate in the waters of the southern Arabian(Persion) Gulf and Golf of Oman. Acta Adriat, 31; 45-57.
12.F.A.O. (2000). Fishery statistics capture production. Rome Italy, 86; 1-10.
13.FAO. (2010). Woekshop on the status of shared fisheries in the northern Arabian sea-Iran (Islamic Republic of),Oman and Pakistan, Muscat, Oman.
14.Ferguson, M. (1995). The role of molecular genetic markers in the management of cultured fish .G.R. Carvalho and T.J. Pitcher (Eds.), Molecular Genetic in Fisheries . London :Chapman &Hail; 81-104.
15.Feron, P., Misund O.A. (1999). Dynamic of pelagic fish distribution and behavior effect if fisheries and stock assessment., U.K. University press, comridge, pp348.
16.Froese, R., Pauly, D. (Eds.). (2011). Fish Base.World Wide Web electronic publication.
URL:www.fishbase.orghttp //: www. fishbase. org[version], 08/2011,
17.Hermida, M.; Fernández, J.; Amaro, R.; Miguel, E. (2005). Morphometric and meristic variation in Galician three spine stickle back populations, north west Spain. Environmental Biology of Fishes, 73(2); 189-200.
18.Meyer, A. (1987). Phenotypic plasticity and heterochrony in Cichlasoma managuense (Piscles, ciclidae) and their implication for speciation in cichlid fishes. Evolution, 41; 1357- 1369.
19.Randall, J.E., G. Allen., Smith-Vaniz, W. (1978). Illustrated identification guide to commercial fishes. FAO Reg, Fish.Surv.Devel.Proj., (FI:DP/RAB/71/273/3), 221 pp.
20.Rodriguez, F. J., Garcia Gasca, S. A., Cruz-Aguero, J. De La. (2011). A study of the population structure of the pacific sardine Sardinops sagax(Jenyns,1842). Fisheries Research, 107; 169-176.
21.Samonte, I.E., Pagulayan, R.C., Mayer, W.E. (2000). Molecular phylogeny of philippine fresh water sardines based on mitochondrial DNA analysis. The American Genetic Association, 91; 274-253.
22.Shepherd, G. (1991). Meristic and morphometric variation in Black Sea Bass North of Cape Hatteras, North Carolina. Am. J. Fish. Manag, 11; 139-149.
23.Silva, A. (2003). Morphometric variation among sardine(Sardina pilchardus) populations from the northeastern Atlantic and the western Mediterranean. ICES Journal of MarineScience, 60; 1352e1360.
24.Stirling, H. P., Philips, M.J. (1990). Water quality management for aquaculture and fisheries, Bagladesh aquaculture and fisheries resource unite. Ins. Of Aqua. Niv of Stitling. Pp21.
25.Stearns, S. C. (1983). A natural experiment in life-history evolution: field data on the introduction of mosquitofish (Gambusia affinis) to Hawaii. Evolution, 37; 601-617.
26.Swaine, D. P., Ridell, B. E., Murray, C. B. (1991). Morphological differences between hatchery and wild populations of coho salmon (Oncorhynchus kisutch):environmental versus genetic origin. Can. J. Fish. Aquat. Sci, 48; 1783-1791.
27.Van Zaling, N.P., Owfi, F., Ghasemi, S., Khorshidian K., Niamaimandi N. (1993). Resources of small pelagic in Iranian Waters, a review, Fao/ Undp fisheries development progect ir/ 83/013; 370p.
28.Villaluz, A. C., Maccrimmon, H.R. (1988). Meristic variations in milkfish Chanos chanos from Philippine waters. Mar. Biol, 97; 145-150.
29.Ward, R. D., Woodwark, M., Skibinski, D. O. F. (1994b). A comparison of genetic diversity levels in marine, fresh-water, and anadromous fishes. J. Fish Biol, 44; 213-232.
30.Ward, R.D., Grewe, M. (1995). Appraisal of molecular genetic techniques in fisheries .G .R . Carvalho and T .J .Pitcher (Eds.), Molecular Genetics in Fisheries . London :Ch-7 apman& Hall;29-54.
31.Whitehead Peter, J.P. (1985). FAO Fisheries Synopsis No. 125, Volume 7, Part 1 FIR/S125 Vol. 7, Part 1,1978, Illustrated identification guide to commercial fishes. FAO Reg, Fish.Surv.Devel.Proj., (FI:DP/RAB/71/273/3); 221 pp.