سازگاریهای غدد درونریز در متابولیسم گلوکز: عملکرد بهینه در ورزشهای استقامتی
محورهای موضوعی : نشانگر های زیستی پلاسما
دانیال تارمست
1
*
,
اردشیر ظفری
2
1 - استادیار گروه تربیت بدنی و علوم ورزشی، دانشکده علوم انسانی، واحد پرند، دانشگاه آزاد اسلامی، پرند، تهران، ایران
2 - گروه علوم ورزشی، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران.
کلید واژه: ورزشهای استقامتی, متابولیسم گلوکز, انسولین, گلوکاگون, کاتکولآمینها, هموستاز گلوکز, سازگاریهای غدد درونریز,
چکیده مقاله :
ورزشهای استقامتی با تمرکز بر فعالیتهای طولانیمدت و شدت متوسط، تغییرات قابل توجهی در سیستمهای فیزیولوژیکی و هورمونی بدن ایجاد میکنند. این مقاله مروری به بررسی سازگاریهای غدد درونریز در متابولیسم گلوکز در پاسخ به تمرینات استقامتی و تأثیرات آنها بر عملکرد ورزشی پرداخته است. در این فرایند، هورمونهایی همچون انسولین، گلوکاگون، و کاتکولآمینها نقش مهمی در تنظیم سطح گلوکز خون و تأمین انرژی برای بافتها، به ویژه عضلات ایفا میکنند. تمرینات استقامتی موجب کاهش ترشح انسولین و افزایش ترشح گلوکاگون و کاتکولآمینها میشوند، که این تغییرات به بهینهسازی استفاده از گلوکز و حفظ هموستاز گلوکز کمک میکند. علاوه بر این، تأثیر این تغییرات هورمونی تحت تأثیر عواملی مانند جنسیت، سطح آمادگی جسمانی و شرایط محیطی قرار دارد. لذا، با بررسی تحقیقات موجود نشان میدهد که این سازگاریها در افراد با سطح آمادگی جسمانی بالا منجر به عملکرد بهینهتر در طول ورزشهای استقامتی میشود. در نتیجه، مقاله حاضر بر اهمیت شناخت دقیق تعاملات هورمونی در ورزشهای استقامتی و ضرورت انجام تحقیقات بیشتر برای درک کامل این سازگاریها تأکید میکند.
Endurance sports, characterized by prolonged durations of moderate-intensity exercise, result in substantial changes in the body's hormonal and physiological systems. The impact of endurance training on athletic performance and the endocrine alterations associated with glucose metabolism are the focus of this review article. In regulating blood glucose levels and providing energy to tissues, particularly skeletal muscles, hormones such as insulin, glucagon, and catecholamines are essential. Endurance training reduces insulin secretion and increases the production of glucagon and catecholamines, which collectively promote glucose consumption and maintain glucose homeostasis. Furthermore, the impacts of these hormonal modifications are affected by environmental conditions, individual fitness levels, and biological sex. Current literature suggests that individuals demonstrating elevated physical fitness levels experience more optimal endocrine responses, subsequently enhancing their endurance activity performance. The importance of understanding the intricate hormonal connections in endurance sports and the need for further research to elucidate these adaptations fully is underscored in this article.
1. Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? International journal of sports physiology and performance. 2010;5(3):276-91.
2. Kubukeli ZN, Noakes TD, Dennis SC. Training techniques to improve endurance exercise performances. Sports medicine. 2002;32:489-509.
3. Latino F, Martinez-Roig R, Susanto N, Setyawan H, Anam K, Saraiello E, et al. Endurance training and physiological variables: effects on sub-elite volleyball players. 2024.
4. Okilanda A, Putri SAR, Fajar M, Febrian M, Saputra M, Tulyakul S, et al. Endurance training and its impact on physical health among university students. Retos: nuevas tendencias en educación física, deporte y recreación. 2024(59):1092-102.
5. Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. The Journal of physiology. 2008;586(1):35-44.
6. Alghannam AF, Ghaith MM, Alhussain MH. Regulation of energy substrate metabolism in endurance exercise. International journal of environmental research and public health. 2021;18(9):4963.
7. Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nature metabolism. 2020;2(9):817-28.
8. MacLaren D, Reilly T, Campbell I, Hopkin C. Hormonal and metabolic responses to maintained hyperglycemia during prolonged exercise. Journal of Applied Physiology. 1999;87(1):124-31.
9. Von Ah Morano AE, Dorneles GP, Peres A, Lira FS. The role of glucose homeostasis on immune function in response to exercise: The impact of low or higher energetic conditions. Journal of cellular physiology. 2020;235(4):3169-88.
10. Qaid MM, Abdelrahman MM. Role of insulin and other related hormones in energy metabolism—A review. Cogent Food & Agriculture. 2016;2(1):1267691.
11. Janah L, Kjeldsen S, Galsgaard KD, Winther-Sørensen M, Stojanovska E, Pedersen J, et al. Glucagon receptor signaling and glucagon resistance. International journal of molecular sciences. 2019;20(13):3314.
12. Barth E, Albuszies G, Baumgart K, Matejovic M, Wachter U, Vogt J, et al. Glucose metabolism and catecholamines. Critical care medicine. 2007;35(9):S508-S18.
13. Nirmalan N, Nirmalan M. Hormonal control of metabolism: regulation of plasma glucose. Anaesthesia & Intensive Care Medicine. 2020;21(11):578-83.
14. Tarmast D, Kumar Ghosh A, Keong Chen C. Metabolic Responses to Sago, Soy and Sago+Soy Combined Supplementations during Endurance Cycling Performance Followed by Time Trial Performance in the Heat. International Conference of Sports Science- AESA. 2017;0(1):7.
15. Gallen I, Tsintzas K, MacDonald IA. Endocrine and metabolic responses to exercise. Type 1 Diabetes: Clinical Management of the Athlete. 2012:1-28.
16. Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. American journal of physiology-endocrinology and metabolism. 2003;284(4):E671-E8.
17. Lizcano F. The beige adipocyte as a therapy for metabolic diseases. International journal of molecular sciences. 2019;20(20):5058.
18. Mayegowda SB, Gowda BN, Gowda UC, Joshi V, Manjula N. Sustainability and green nanomaterials on nanotechnology-based sensors. Nanotechnology-Based Sensors for Detection of Environmental Pollution: Elsevier; 2024. p. 553-72.
19. Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. The Journal of clinical investigation. 1960;39(7):1157-75.
20. Hackney AC, Walz EA. Hormonal adaptation and the stress of exercise training: the role of glucocorticoids. Trends in sport sciences. 2013;20(4):165.
21. Rivera-Brown AM, Frontera WR. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training. Pm&r. 2012;4(11):797-804.
22. Geor RJ. Body Fluids and Electrolytes: Responses to Exercise and Training. Equine Sports Medicine and Surgery: Elsevier; 2024. p. 954-70.
23. Périard JD, Eijsvogels TM, Daanen HA. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiological reviews. 2021;101(4):1873-979.
24. Mennitti C, Farina G, Imperatore A, De Fonzo G, Gentile A, La Civita E, et al. How does physical activity modulate hormone responses? Biomolecules. 2024;14(11):1418.
25. Kjaer M, Dela F. Endocrine responses to exercise. Exercise and immune function. 2024:1-20.
26. Boulay MR. Perspectives in exercise science and sports medicine. Volume 1. Prolonged exercise. Edited by D. R. Lamb and R. Murray. xiv + 494 pp. Indianapolis: Benchmark Press. 1988. $35.00 (cloth). American Journal of Human Biology. 2005;2(2):171-2.
27. Convertino VA. Blood volume response to physical activity and inactivity. The American journal of the medical sciences. 2007;334(1):72-9.
28. Thornton JR. Hormonal responses to exercise and training. Veterinary Clinics of North America: Equine Practice. 1985;1(3):477-96.
29. Narinx N, David K, Walravens J, Vermeersch P, Claessens F, Fiers T, et al. Role of sex hormone-binding globulin in the free hormone hypothesis and the relevance of free testosterone in androgen physiology. Cellular and Molecular Life Sciences. 2022;79(11):543.
30. Goodman RL, Herbison AE, Lehman MN, Navarro VM. Neuroendocrine control of gonadotropin‐releasing hormone: pulsatile and surge modes of secretion. Journal of neuroendocrinology. 2022;34(5):e13094.
31. Close GL, Hamilton DL, Philp A, Burke LM, Morton JP. New strategies in sport nutrition to increase exercise performance. Free radical biology and medicine. 2016;98:144-58.
32. Tarmast D. A Systematic Review and Meta-Analysis on the Influence of Exercise-Induced Oxidative Stress on the Pathogenesis of Infectious Diseases. Journal of Sports Physiology and Athletic Conditioning. 2024;14(14):37.
33. Athanasiou N, Bogdanis GC, Mastorakos G. Endocrine responses of the stress system to different types of exercise. Reviews in Endocrine and Metabolic Disorders. 2023;24(2):251-66.
34. de Herder WW, Klöppel G. One hundred years after the discovery of insulin and glucagon: the history of tumors and hyperplasias that hypersecrete these hormones. Endocrine-Related Cancer. 2023;30(9).
35. Devlin JG. The effect of training and acute physical exercise on plasma insulin-like activity. Irish Journal of Medical Science (1926-1967). 1963;38:423-5.
36. Syeda USA, Battillo D, Visaria A, Malin SK. The importance of exercise for glycemic control in type 2 diabetes. American Journal of Medicine Open. 2023;9:100031.
37. Lin Y, Fan R, Hao Z, Li J, Yang X, Zhang Y, et al. The Association Between Physical Activity and Insulin Level Under Different Levels of Lipid Indices and Serum Uric Acid. Frontiers in Physiology. 2022;13.
38. Iaccarino G, Franco D, Sorriento D, Strisciuglio T, Barbato E, Morisco C. Modulation of Insulin Sensitivity by Exercise Training: Implications for Cardiovascular Prevention. Journal of Cardiovascular Translational Research. 2020;14(2):256-70.
39. Pruett E. Plasma insulin concentrations during prolonged work at near maximal oxygen uptake. Journal of Applied Physiology. 1970;29(2):155-8.
40. Pruett E, editor Plasma insulin levels during prolonged exercise. Muscle Metabolism During Exercise: Proceedings of a Karolinska Institutet Symposium held in Stockholm, Sweden, September 6–9, 1970 Honorary guest: E Hohwü Christensen; 1971: Springer.
41. Vranic M, Berger M. Exercise and Diabetes Mellitus. Diabetes. 1979;28(2):147-67.
42. Schalch DS. The influence of physical stress and exercise on growth hormone and insulin secretion in man. The Journal of laboratory and clinical medicine. 1967;69(2):256-69.
43. Chen C, Zhang D, Ye M, You Y, Song Y, Chen X. Effects of various exercise types on inflammatory response in individuals with overweight and obesity: a systematic review and network meta-analysis of randomized controlled trials. International journal of obesity. 2025;49(2):214-25.
44. Engin B, Willis SA, Malaikah S, Sargeant JA, Yates T, Gray LJ, et al. The effect of exercise training on adipose tissue insulin sensitivity: A systematic review and meta‐analysis. Obesity Reviews. 2022;23(7):e13445.
45. Flockhart M, Tischer D, Nilsson LC, Blackwood SJ, Ekblom B, Katz A, et al. Reduced glucose tolerance and insulin sensitivity after prolonged exercise in endurance athletes. Acta Physiologica. 2023;238(4):e13972.
46. Zhang H, Liang J-L, Wu Q-Y, Li J-X, Liu Y, Wu L-W, et al. Swimming suppresses cognitive decline of HFD-induced obese mice through reversing hippocampal inflammation, insulin resistance, and BDNF level. Nutrients. 2022;14(12):2432.
47. Małkowska P. Positive effects of physical activity on insulin signaling. Current Issues in Molecular Biology. 2024;46(6):5467-87.
48. Richter EA, Bilan PJ, Klip A. A Comprehensive View of Muscle Glucose Uptake: Regulation by Insulin, Contractile Activity and Exercise. Physiological Reviews. 2025.
49. Hall LG, Thyfault JP, Johnson JD. Exercise and inactivity as modifiers of β cell function and type 2 diabetes risk. Journal of Applied Physiology. 2023;134(4):823-39.
50. Struthers AD, Burrin JM, Brown MJ. Exercise-induced increases in plasma catecholamines and growth hormone are augmented by selective α2-adrenoceptor blockade in man. Neuroendocrinology. 1986;44(1):22-8.
51. McCarthy O, Schmidt S, Christensen MB, Bain SC, Nørgaard K, Bracken R. The endocrine pancreas during exercise in people with and without type 1 diabetes: Beyond the beta-cell. Frontiers in endocrinology. 2022;13:981723.
52. Flockhart M, Larsen FJ. Continuous Glucose Monitoring in Endurance Athletes: Interpretation and Relevance of Measurements for Improving Performance and Health. Sports Medicine. 2023;54(2):247-55.
53. Cao W, He Y, Fu R, Chen Y, Yu J, He Z. A Review of Carbohydrate Supplementation Approaches and Strategies for Optimizing Performance in Elite Long-Distance Endurance. Nutrients. 2025;17(5):918.
54. Wu BN, O'Sullivan AJ. Sex Differences in Energy Metabolism Need to Be Considered with Lifestyle Modifications in Humans. Journal of nutrition and metabolism. 2011;2011:1-6.
55. Venugopal SK, Sankar P, Jialal I. Physiology, glucagon. StatPearls [Internet]. 2023.
56. Sutton J, Young J, Lazarus L, Hickie J, Maksvytis J. The hormonal response to physical exercise. Australasian Annals of Medicine. 1969;18(2):84-90.
57. Bloom S, Johnson R, Park D, Rennie M, Sulaiman W. Differences in the metabolic and hormonal response to exercise between racing cyclists and untrained individuals. The Journal of physiology. 1976;258(1):1-18.
58. Lee M-C, Chung Y-C, Thenaka PC, Wang Y-W, Lin Y-L, Kan N-W. Effects of different HIIT protocols on exercise performance, metabolic adaptation, and fat loss in middle-aged and older adults with overweight. International Journal of Medical Sciences. 2024;21(9):1689.
59. Riddell MC, Peters AL. Exercise in adults with type 1 diabetes mellitus. Nature Reviews Endocrinology. 2023;19(2):98-111.
60. Frampton J, Cobbold B, Nozdrin M, Oo HT, Wilson H, Murphy KG, et al. The effect of a single bout of continuous aerobic exercise on glucose, insulin and glucagon concentrations compared to resting conditions in healthy adults: a systematic review, meta-analysis and meta-regression. Sports Medicine. 2021;51(9):1949-66.
61. Galbo H, Holst J, Christensen N. Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. Journal of applied physiology. 1975;38(1):70-6.
62. Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR. Gender differences in substrate for endurance exercise. Journal of Applied Physiology. 1990;68(1):302-8.
63. Vranic M, Kawamori R. Essential Roles of Insulin and Glucagon in Regulating Glucose Fluxes During Exercise in Dogs: Mechanism of Hypoglycemia. Diabetes. 1979;28(Supplement_1):45-52.
64. Merkhassine M, Coch RW, Frederick CE, Bennett LL, Peng SA, Morse B, et al. Glucagon infusion alters the circulating metabolome and urine amino acid excretion in dogs. Journal of Endocrinology. 2024;262(2).
65. Hoffman EG, Jahangiriesmaili M, Mandel ER, Greenberg C, Aiken J, D’Souza NC, et al. Somatostatin receptor antagonism reverses glucagon counterregulatory failure in recurrently hypoglycemic male rats. Endocrinology. 2021;162(12):bqab189.
66. Infante M, Baidal DA, Rickels MR, Fabbri A, Skyler JS, Alejandro R, et al. Dual‐hormone artificial pancreas for management of type 1 diabetes: Recent progress and future directions. Artificial organs. 2021;45(9):968-86.
67. Wewer Albrechtsen NJ, Holst JJ, Cherrington AD, Finan B, Gluud LL, Dean ED, et al. 100 years of glucagon and 100 more. Diabetologia. 2023;66(8):1378-94.
68. Björkman O, Felig P, Hagenfeldt L, Wahren J. Influence of hypoglucagonemia on splanchnic glucose output during leg exercise in man. Clinical Physiology. 2008;1(1):43-57.
69. Von Euler US, Hellner S. Excretion of Noradrenaline and Adrenaline in Muscular Work. Acta physiologica Scandinavica. 2008;26(2-3):183-91.
70. Vendsalu A. Studies on adrenaline and noradrenaline in human plasma. Acta physiologica Scandinavica Supplementum. 1960;49(173):1-123.
71. Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the Effects of Exercise, Training and Gender. Sports Medicine. 2008;38(5):401-23.
72. Galbo H. Endocrinology and metabolism in exercise. International Journal of Sports Medicine. 1981;2(04):203-11.
73. Mc Morris T, Sproule J, Draper S, Child R. Performance of a psychomotor skill following rest, exercise at the plasma epinephrine threshold and maximal intensity exercise. Perceptual and Motor Skills. 2000;91(2):553-62.
74. Fleg JL, Tzankoff SP, Lakatta EG. Age-related augmentation of plasma catecholamines during dynamic exercise in healthy males. Journal of Applied Physiology. 1985;59(4):1033-9.
75. Kohrt WM, Spina RJ, Ehsani AA, Cryer PE, Holloszy JO. Effects of age, adiposity, and fitness level on plasma catecholamine responses to standing and exercise. Journal of Applied Physiology. 1993;75(4):1828-35.
76. Kjær M. Epinephrine and some other hormonal responses to exercise in man: with special reference to physical training. International journal of sports medicine. 1989;10(01):2-15.
77. Sutton J, Jurkowski J, Keane P, Walker W, Jones N, Toews C, editors. Plasma-catecholamine, insulin, glucose and lactate responses to exercise in relation to the menstrual-cycle. Medicine and Science in Sports and Exercise; 1980: WILLIAMS & WILKINS 351 WEST CAMDEN ST, BALTIMORE, MD 21201-2436.
78. Lavoie J-M, Dionne N, Helie R, Brisson G. Menstrual cycle phase dissociation of blood glucose homeostasis during exercise. Journal of applied physiology. 1987;62(3):1084-9.
79. McMorris T. The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. International journal of psychophysiology. 2021;170:75-88.
80. Kjaer M, Christensen N, Sonne B, Richter E, Galbo H. Effect of exercise on epinephrine turnover in trained and untrained male subjects. Journal of Applied Physiology. 1985;59(4):1061-7.
81. Grosman-Rimon L, Wright E, Sabovich S, Rimon J, Gleitman S, Sudarsky D, et al. Relationships among norepinephrine levels, exercise capacity, and chronotropic responses in heart failure patients. Heart Failure Reviews. 2023;28(1):35-45.
82. Christensen NJ, Galbo H. Sympathetic nervous activity during exercise. Annual review of physiology. 1983;45:139-53.
83. Sutton JR, Reeves JT, Wagner PD, Groves BM, Cymerman A, Malconian MK, et al. Operation Everest II: oxygen transport during exercise at extreme simulated altitude. Journal of Applied Physiology. 1988;64(4):1309-21.
84. Gollnick P-D, Soule RG, Taylor AW, Williams C, Ianuzzo CD. Exercise-induced glycogenolysis and lipolysis in the rat: hormonal influence. American Journal of Physiology-Legacy Content. 1970;219(3):729-33.
85. Ahmad Y, Seo DS, Jang Y. Metabolic effects of ketogenic diets: exploring whole-body metabolism in connection with adipose tissue and other metabolic organs. International Journal of Molecular Sciences. 2024;25(13):7076.
86. Richter EA, Sylow L, Hargreaves M. Interactions between insulin and exercise. Biochemical journal. 2021;478(21):3827-46.
87. Järhult J, Holst J. The role of the adrenergic innervation to the pancreatic islets in the control of insulin release during exercise in man. Pflügers Archiv. 1979;383:41-5.
88. Seals DR. Influence of muscle mass on sympathetic neural activation during isometric exercise. Journal of Applied Physiology. 1989;67(5):1801-6.
89. Mueller PJ. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clinical and experimental pharmacology and physiology. 2007;34(4):377-84.
90. Katayama K, Saito M. Muscle sympathetic nerve activity during exercise. The Journal of Physiological Sciences. 2019;69(4):589-98.
91. Victor RG, Seals DR, Mark AL. Differential control of heart rate and sympathetic nerve activity during dynamic exercise. Insight from intraneural recordings in humans. Journal of Clinical Investigation. 1987;79(2):508-16.
92. Fisher JP, Young CN, Fadel PJ. Autonomic adjustments to exercise in humans. Comprehensive Physiology. 2015;5(2):475-512.
93. Daniela M, Catalina L, Ilie O, Paula M, Daniel-Andrei I, Ioana B. Effects of Exercise Training on the Autonomic Nervous System with a Focus on Anti-Inflammatory and Antioxidants Effects. Antioxidants. 2022;11(2).
94. Collins KA, Ross LM, Slentz CA, Huffman KM, Kraus WE. Differential Effects of Amount, Intensity, and Mode of Exercise Training on Insulin Sensitivity and Glucose Homeostasis: A Narrative Review. Sports Med Open. 2022;8(1):90.
95. Colberg SR. Why Glucagon Matters for Hypoglycemia and Physical Activity in Individuals With Type 1 Diabetes. Front Clin Diabetes Healthc. 2022;3:889248.
96. Chisholm DJ, Jenkins AB, James DE, Kraegen EW. The effect of hyperinsulinemia on glucose homeostasis during moderate exercise in man. Diabetes. 1982;31(7):603-8.
97. Björkman O, Felig P, Hagenfeldt L, Wahren J. Influence of hypoglucagonemia on splanchnic glucose output during leg exercise in man. Clinical Physiology. 1981;1(1):43-57.
98. Galbo H, Christensen N, Holst J. Catecholamines and pancreatic hormones during autonomic blockade in exercising man. Acta physiologica Scandinavica. 1977;101(4):428-37.
99. Hansen AP. The effect of adrenergic receptor blockade on the exercise-induced serum growth hormone rise in normals and juvenile diabetics. J Clin Endocrinol Metab. 1971;33(5):807-12.
100. Pelizzo G, Calcaterra V, Marinaro M, Baldassarre P, Canonica CPM, Zuccotti G. Metabolic and Hormonal Changes in Pediatric Burn Patients: Mechanisms, Evidence, and Care Strategies. Eur Burn J. 2025;6(2):17.
101. Hölzen L, Schultes B, Meyhöfer SM, Meyhöfer S. Hypoglycemia unawareness—a review on pathophysiology and clinical implications. Biomedicines. 2024;12(2):391.
102. Hoelzer DR, Dalsky GP, Schwartz NS, Clutter W, Shah S, Holloszy J, et al. Epinephrine is not critical to prevention of hypoglycemia during exercise in humans. American Journal of Physiology-Endocrinology and Metabolism. 1986;251(1):E104-E10.
103. Hoelzer D, Dalsky G, Clutter W, Shah S, Holloszy J, Cryer P. Glucoregulation during exercise: hypoglycemia is prevented by redundant glucoregulatory systems, sympathochromaffin activation, and changes in islet hormone secretion. The Journal of clinical investigation. 1986;77(1):212-21.
104. Thorens B. Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion. Physiological Reviews. 2024;104(4):1461-86.
105. Boyda HN, Procyshyn RM, Pang CC, Barr AM. Peripheral adrenoceptors: the impetus behind glucose dysregulation and insulin resistance. J Neuroendocrinol. 2013;25(3):217-28.
106. DiMenna FJ, Arad AD. The acute vs. chronic effect of exercise on insulin sensitivity: nothing lasts forever. Cardiovascular endocrinology & metabolism. 2021;10(3):149-61.
107. Silva FM, Duarte-Mendes P, Teixeira AM, Soares CM, Ferreira JP. The effects of combined exercise training on glucose metabolism and inflammatory markers in sedentary adults: a systematic review and meta-analysis. Sci Rep. 2024;14(1):1936.
108. Ispas S, Nelson Twakor A, Mindrescu NM, Ispas V, Tofolean DE, Mercore Hutanu E, et al. From Sedentary to Success: How Physical Activity Transforms Diabetes Management: A Systematic Review. Journal of Mind and Medical Sciences. 2025;12(1):10.
109. Mikines KJ, Sonne B, Tronier B, Galbo H. Effects of acute exercise and detraining on insulin action in trained men. Journal of applied physiology (Bethesda, Md : 1985). 1989;66(2):704-11.
110. Carrillo-Arango HA, Gonzalez DA, Ordonez-Mora LT, Atencio-Osorio MA, Triana-Reina HR, Izquierdo M. Acute Effect of High-Intensity Interval Training on Postprandial Glycemia in Overweight and Obese Individuals: A Scoping Review. Nutrients. 2025;17(8):1364.
111. Nirmalan N, Nirmalan M. Hormonal control of metabolism: regulation of plasma glucose. Anaesthesia & Intensive Care Medicine. 2023;24(10):618-23.
112. Yang L, Li P, Huang X, Wang C, Zeng Y, Wang J, et al. Effects of Combined Transcriptome and Metabolome Analysis Training on Athletic Performance of 2-Year-Old Trot-Type Yili Horses. Genes (Basel). 2025;16(2):197.
113. Fan R, Kong J, Xie Y. Potential Regulatory Role of Appetite-Regulating Hormones and Exercise Associated with Emotional Eating: A Narrative Review. Lifespan Development and Mental Health. 2025;1(1):10001.
114. Richter EA, Turcotte L, Hespel P, Kiens B. Metabolic responses to exercise. Effects of endurance training and implications for diabetes. Diabetes Care. 1992;15(11):1767-76.
115. Richter EA, Derave W, Wojtaszewski JF. Glucose, exercise and insulin: emerging concepts. J Physiol. 2001;535(Pt 2):313-22.
116. Sellami M, Bragazzi NL, Slimani M, Hayes L, Jabbour G, De Giorgio A, et al. The Effect of Exercise on Glucoregulatory Hormones: A Countermeasure to Human Aging: Insights from a Comprehensive Review of the Literature. Int J Environ Res Public Health. 2019;16(10):1709.
117. Hearris MA, Hammond KM, Fell JM, Morton JP. Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations. Nutrients. 2018;10(3):298.
118. Travers G, Kippelen P, Trangmar SJ, González-Alonso J. Physiological function during exercise and environmental stress in humans—An integrative view of body systems and homeostasis. Cells. 2022;11(3):383.
119. Rosbrook PR. The Crossroads of Heat Stress, Metabolism, Nutrition, and Human Performance: State University of New York at Buffalo; 2024.
120. Richalet J-P, Hermand E, Lhuissier FJ. Cardiovascular physiology and pathophysiology at high altitude. Nature Reviews Cardiology. 2024;21(2):75-88.
121. Prencipe N, Bona C, Lanfranco F, Grottoli S, Benso AS. The effects of altitude on the hormonal response to physical exercise. Endocrinology of physical activity and sport. 2020:341-62.