پهنه بندی رخداد زمین لغزش در محدوده چهارگوش نقشه زمین شناسی 1:100000 (نمونه موردی: کیاسر، استان مازندران)
محورهای موضوعی : جغرافیا ومخاطرات
روح اله تقوی
1
*
,
دکتر علیرضا جعفری راد
2
,
محمدصادق زنگنه
3
,
احمد خلیلی آواتی
4
,
صائب تقوی
5
1 - کارشناس ارشد زمین شناسی زیست محیطی، دانشکده محیط زیست و انرژی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
2 - دکتری تخصصی سیستم اطلاعات جغرافیایی، دانشکده محیط زیست و انرژی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
3 - کارشناس GIS، سازمان نظام مهندسی کشاورزی و منابع طبیعی استان خوزستان، ایران
4 - کارشناس ارشد آب شناسی، دانشگاه پیام نور، ابهر، ایران
5 - کارشناسی زمین شناسی، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران
کلید واژه: پهنهبندی, زمینلغزش, همپوشانی, کیاسر, GIS , AHP,
چکیده مقاله :
زمینلغزش یکی از انواع خطرناک پدیدههای طبیعی است. این مخاطره طبیعی هر ساله در بسیاری از کشورها خساراتی به بار میآورد. ارزیابی دقیق خطر زمینلغزش جهت کاهش خسارات ضروری است. در این پژوهش به بررسی و پهنهبندی خطر زمین لغزش در نقشه چهارگوش 1:100000 کیاسر با استفاده از GIS و رویکرد AHP پرداخته شده است. در این مطالعه از لایه های اطلاعاتی که در وقوع زمین لغزش مؤثر هستند شامل زمین شناسی، شیب، جهت شیب، متوسط بارش سالیانه، زمینلرزه، گسل و محورچین، فاصله از راه، فاصله از رودخانه، فرسایش و کاربری اراضی استفاده شده است. از میان معیارهای انتخاب شده لایه متوسط بارش سالیانه و شیب به ترتیب با وزن 0.27 و 0.22 بیشترین امتیاز و اهمیت را در این پژوهش داشته و معیار کاربری اراضی با وزن 0.034 کمترین امتیاز و اهمیت را داشته است. نتایج تحقیق نشان داد که 6 درصد (151.68 کیلومتر مربع) از مساحت کل منطقه (2500 کیلومتر مربع) در معرض خطر زمینلغزش قرار دارند که 22 درصد از کل مساحت روستاهای منطقه مورد مطالعه را شامل میشود. همچنین با بررسیهای میدانی انجام شده مشخص شد که خطوط اصلی انتقال نیرو و خطوط اصلی نفت در معرض خطر نبوده و تنها برخی معادن منطقه مورد مطالعه در خطر هستند. از کل کارخانههای صنعتی در منطقه دو کارخانه تولیدی خبازی و کارخانه حفاظت از فساد میوه در محدوده خطر زمینلغزش قرار دارند. با توجه به مطابقت زیاد زمینلغزشهای بهوقوع پیوسته در گذشته و روش استفاده شده در این تحقیق، نتایج نشان داده که این روش در پهنهبندی خطر زمینلغزش در نواحی کوهستانی و یا نواحی که تنوع اقلیمی و پوشش گیاهی دارند مناسب است.
چکیده مبسوط فارسی
مقدمه
زمینلغزشهای کم عمق توام با جریانهای آواری یکی از علل عمده تخریب سازهها و زیرساختها و تلفات در مناطق کوهستانی و تپه ماهوری است که معمولاً توسط بارندگیهای کوتاه مدت ولی شدید ایجاد میشوند. در سالهای اخیر تغییرات اقلیمی جهانی باعث رویدادهای شدید آب و هوایی شده که احتمال رخداد زمینلغزش را افزایش داده است. همچنین در برخی موارد فعالیتهای انسانی میتوانند با تغییر در آستانه تحمل دامنهها در وقوع زمینلغزش، پویایی فرآیندهای طبیعی را تسریع کرده و خطرات بالقوهای را برای مردم بوجود آورد. تغییرات کاربری اراضی و مدیریت نادرست زمین میتوانند خطر رخ داد زمینلغزش را افزایش دهد. بلایای هیدرولوژیکی نظیر سیل بیشترین سهم را از حوادث طبیعی (51.7 درصد) داشته و بلایای ژئوفیزیکی نظیر زلزله و زمینلغزش 9.1 درصد را شامل میشوند. تهیه نقشه پهنهبندی رخداد زمینلغزش برای مدیریت صحیح کاربری و ارزیابی ریسک ضروری است. همچنین با توجه به اینکه زمینلغزش میتواند مشکلات جدی را برای رفاه اجتماعی و اقتصادی ایجاد کند، لذا به منظور کاهش خطرات زمینلغزش در مناطق بخصوص کوهستانی تهیه نقشههای دقیق زمینلغزش به منظور اجرای برنامههای مدیریت ریسک هدفمند امری ضروری است. طی سالها اخیر بسیاری از سازمانهای دولتی دنیا تلاش کردهاند با آموزش مردم برای درک بهتر اثرات شدید زمینلغزش و توسعه ابزارهای مناسب برای برنامهریزی و تصمیمگیری، راهحلهایی برای کاهش پیامدهای فاجعهبار زمینلغزش بیابند. با توسعه سریع سیستم اطلاعات جغرافیایی در سه دهه گذشته، روشهای مدلسازی مختلفی برای تحلیل فضایی زمینلغزش و نقشهبرداری حساسیت زمین نسبت به رخداد زمینلغزش در سراسر جهان به کار گرفته شده است. در این پژوهش با بهرگیری از سیستم اطلاعات جغرافیایی و مدل تحلیل سلسله مراتبی به پهنهبندی زمینلغزش در محدوده چهارگوش نقشه زمینشناسی ورقه کیاسر پرداخته شد. منطقه مورد مطالعه به دلیل وجود پدیده مخاطرهآمیز زمینلغزش در وسعت بسیار زیاد که باعث رانش زمینهای مسکونی و زراعی، مسدود شدن جادهها، تخریب خطوط انتقال نیرو، گاز، آب، فاضلاب، معادن، کارگاهها و کارخانهها و به تبع آن ورود آلایندههای مختلف به محیط زیست میشود، مطالعه شد.
داده و روش
در این پژوهش ابتدا مطالعات دفتری و جمعآوری داده شامل گردآوری منابع و اطلاعات پایه نظیر گزارشهای زمینشناسی، پایاننامه، وبسایتها و غیره که در طول سالهای گذشته توسط سازمانها و ادارات مختلف در محدوده مورد مطالعه به انجام رسیده است، صورت گرفت. دادههای مورد استفاده در این مطالعه شامل: شامل نقشه زمینشناسی 1:100000 ورقه کیاسر، دادههای توپوگرافی در مقیاس 1:25000، دادههای لرزهای (سازمان زمینشناسی کشور)، اطلاعات بارش و نقشه پوشش گیاهی (سازمان هواشناسی و سازمان آبخیزداری استان مازندران) است. پس از تهیه دادههای مورد نیاز رقومیسازی نقشههای پایه شامل نقشه توپوگرافی، زمینشناسی، نقشه همبارش و زلزله صورت گرفت. سپس بعد از تهیه لایههای معیار امتیازبندی و وزندهی عوامل مؤثر در زمینلغزش براساس نظرات کارشناسی و تحليل سلسله مراتبی صورت گرفت. نهایتا مناطق مستعد رخداد زمینلغزش با بازدید صحرایی در منطقه تطبیق داده شد.
بحث و یافته ها
در این روش، عوامل مؤثر برای پهنهبندی با توجه به شرایط کلی منطقه، مشخصات زمینشناسی و هواشناسی و اقلیم شناسایی شده و بهکمک نرمافزار ArcGIS این مشخصات بهصورت لایههای مدلسازی شدند. بعد از مدلسازی لایهها، با استفاده از استانداردهای موجود در منابع مختلف، لایهها کلاسهبندی شد و در نهایت با تلفیق و ترکیب لایهها و با وزندهی به آنها، نقشه پهنهبندی ترسیم گردید. وزندهی در روش همپوشانی شاخص، وزندهی نسبی میباشد. در این پژوهش، برای وزندهی لایههای مؤثر از روش تحلیل سلسلهمراتبی (روش مقایسه زوجی) استفاده شده که مجموع وزن معیارها برابر 1 میباشد. در روش مقایسه زوجی که توسط پروفسور ساعتی ارائه گردیده شده، معیارها دوبهدو با هم مقایسه شده و میزان ارجحیت معیارها تعیین میشود. پس از آن با قراردادن معیارها در یک ماتریس با روشهای مختلف (در این تحقیق از روش میانگین حسابی استفاده شده است) وزن معیارها محاسبه شده و نرخ ناسازگاری تعیین گردید. پس از محاسبه وزن نسبی لایههای مؤثر همپوشانی لایهها در محیط نرم افزار ArcGIS بهکمک ابزار Weighted Sum انجام گرفت. با توجه به مطالعات صورت گرفته و زمینلرزههای رخ داده مشخص شد که در محدوده مطالعاتی مهمترین عوامل تأثیرگذار در وقوع زمینلغزش عوامل زمینشناسی، شیب و بارندگی است. در محدوده مطالعاتی بیشتر زمینلغزشها در شیبهای 15 تا 35 درجه بهوقوع پیوسته است که تأثیر بارندگی را در وقوع لغزش بیشتر نشان میدهد. در اثر بارندگی آب فرصت بیشتری را برای نفوذ در این شیبها پیدا کرده و با کاهش اصطحکاک و یا افزایش وزن طبقات (لایههای شیلی، رسی، مارنی و رسوبات سست کواترنری) باعث وقوع زمینلغزش در جهت شیب میشود.
نتیجه گیری
در مورد تأثیر جهت شیب در وقوع زمینلغزش در محدوده مطالعاتی میتوان گفت که دامنههای شمالی و غربی بیشتر در معرض زمینلغزش قرار دارند، زیرا با توجه به روند عمومی لایههای زمینشناسی (شرقی-غربی) و جهت حرکت خورشید، دامنههای شمالی و غربی بیشتر از دامنههای دیگر در سایه قرار میگیرند و در نتیجه رطوبت بیشتری را در خود حفظ کرده که این باعث نفوذ بیشتر آب در خاک شده و به وقوع پدیده زمینلغزش کمک میکند. در بازدید صحرایی از منطقه مشخص شد که عامل اصلی زمینلغزش در منطقه جنس زمین (رسی، مارنی، ژیپس و شیل)، شیب و بارندگی میباشد. با تهیه نقشه پهنهبندی خطر زمینلغزش به روش همپوشانی شاخص در محیط ArcGIS و وزندهی عوامل به روش تحلیلی سلسلهمراتبی توسط در نرمافزار Expert Choice نشان داده شد که این روش در پهنهبندی زمینلغزش در نواحی کوهستانی و مناطقی که دارای تغییرات قابلملاحظه ارتفاع و تنوع پوشش گیاهی است، مناسب بوده است. زیرا نتایج بهدستآمده با زمینلغزشهای بهوقوعپیوسته مطابقت زیادی دارد. با توجه به محاسبات انجام شده مساحت محدودههای در معرض خطر زمینلغزش 6 درصد (km2 68/151) از مساحت کل (km2 2500) محدوده مطالعاتی میباشد. مساحت روستاهای در معرض خطر زمینلغزش 24 درصد یعنی km2 04/2 از کل مساحت روستاها (km2 53/8) را شامل میشود. با بررسیهای انجام شده مشخص شد که خطوط اصلی انتقال نیرو و خطوط اصلی نفت در معرض خطر نمیباشند. از کل معادن موجود در این محدوده مطالعاتی، فقط معدن روی در معرض خطر بوده و از کل کارخانههای صنعتی در این محدوده دو کارخانه تولیدی خبازی و کارخانه حفاظت از فساد میوه در محدوده خطر زمینلغزش قرار دارند.
منابع
1.انتظاری، مژگان، وکردوانی، موسی (1401). پهنهبندی خطر زمینلغزش با استفاده از روشهای مبتنی بر GIS و دادههای راداری (مطالعه موردی: فریدون شهر). مجله مخاطرات محیط طبیعی،11(33)، 177-196.
2.حجازی زاده، زهرا، خسروی، آراس، حسینی، سید اسعد، رحیمی، علیرضا، وکربلایی، علیرضا (1400). پتانسیلسنجی مناطق کویری، بیابانی و سواحل مکران به منظور کسب انرژی از خورشید با استفاده از منطق فازی و مدل تحلیل سلسله مراتبی. نشریه تحقیقات کاربردی علوم جغرافیایی، 21(63)، 1-18.
3.ززولی، محمد، فلاح، وفایی نژاد، علیرضا، آل شیخ، علی اصغر، ومدیری، مهدی(1398). پهنهبندی احتمال وقوع زمینلغزش با استفاده از مدلهای آنتروپی شانون و ارزش اطلاعات در محیط GIS مطالعه موردی بخش رودبار الموت شرقی- استان قزوین. فصلنامه اطلاعات جغرافیایی، 28(112)، 123-136.
4.لجم اورک، مرتضی، وپیری، زهرا (1402). پهنهبندی خطر وقوع زمینلغزش با استفاده از مدل تحلیل سلسله مراتبی (AHP) و فن GIS (مطالعه موردی: شهرستان باغملک). مجله جغرافیا و مخاطرات طبیعی، 12(47)، 193-215.
5.یمانی، مجتبی، حسن پور، سیروس، مصطفایی، ابوالفضل، و شادمان رودپشتی، مجید (1391). نقشه پهنهبندی خطر زمینلغزش در حوضه آبخیز کارون بزرگ با استفاده از مدل AHP درمحیط GIS. جغرافیا و برنامه ریزی محیطی، 23(4 (پیاپی 48))، 39-56.
Abstract
Landslides represent a significant natural hazard, causing substantial damage and economic losses worldwide. Accurate landslide susceptibility assessment is crucial for mitigating these risks. This study employs a Geographic Information System (GIS) and the Analytical Hierarchy Process (AHP) to investigate and map landslide susceptibility in the Kiasar 1:100,000 quadrangle, Iran. This study employed a comprehensive set of influencing factors to assess landslide susceptibility including geology, slope, aspect, precipitation, seismicity, faults and folds, distance to roads, distance to rivers, erosion, and land use. Among the selected criteria, precipitation and slope were assigned the highest weights of 0.27 and 0.22, respectively, reflecting their significant influence on landslide occurrence. Conversely, drainage and land use received the lowest weights of 0.034, indicating their relatively lesser impact. The study findings revealed that approximately 6% (151.68 square kilometers) of the total study area (2500 square kilometers) is classified as susceptible to landslides. This corresponds to 22% of the total area occupied by villages within the investigated region. Furthermore, field verifications confirmed that the main power transmission lines and primary oil pipelines are not exposed to landslide hazards. However, some mines within the study area were identified as being at risk. Within the study area, two industrial facilities – a bakery and a fruit preservation plant – were identified as being located within landslide-prone zones. The high correlation between historical landslide occurrences and the methodology employed in this research suggests that the adopted approach is well-suited for landslide susceptibility mapping in mountainous regions characterized by climatic and vegetation diversity.
Extended Abstract
Introduction
Shallow landslides accompanied by debris flows are one of the major causes of damage to structures and infrastructure, as well as casualties in mountainous and hilly areas, typically triggered by short but intense rainfall events. In recent years, global climate change has led to severe weather events that have increased the likelihood of landslides. Additionally, human activities can accelerate the dynamics of natural processes by altering the threshold of slope stability, thereby creating potential hazards for communities. Changes in land use and improper land management can heighten the risk of landslide occurrences. Hydrological disasters, such as floods, account for the largest share of natural events (51.7%), while geophysical disasters, including earthquakes and landslides, comprise 9.1%. The preparation of landslide hazard maps is essential for proper land use management and risk assessment. Furthermore, given that landslides can pose serious problems for social and economic well-being, the development of accurate landslide maps is crucial for implementing targeted risk management programs, particularly in mountainous regions. In recent years, many governmental organizations worldwide have sought solutions to mitigate the catastrophic consequences of landslides by educating the public to better understand the severe impacts of landslides and developing appropriate tools for planning and decision-making. With the rapid development of Geographic Information Systems (GIS) over the past three decades, various modeling methods have been employed globally for spatial analysis of landslides and mapping the sensitivity of land to landslide occurrences. This study utilized GIS and the Analytic Hierarchy Process (AHP) to conduct landslide hazard zoning within the quadrangle of the Kiasar geological map. The study area was selected due to the extensive occurrence of hazardous landslides, which have led to the displacement of residential and agricultural lands, road blockages, destruction of power, gas, water, and sewage lines, as well as mines, workshops, and factories, consequently introducing various pollutants into the environment.
Data and Methodology
In this research, initial desk studies and data collection were conducted, which included gathering resources and baseline information such as geological reports, theses, websites, and other materials compiled by various organizations and agencies over the years within the study area. The data utilized in this study included the 1:100,000 geological map of the Kiasar sheet, topographic data at a scale of 1:25,000, seismic data (from the Geological Survey of Iran), precipitation information, and vegetation maps (from the Meteorological Organization and Watershed Management Organization of Mazandaran Province). After preparing the necessary data, the digitization of baseline maps, including topographic, geological, precipitation, and seismic maps, was carried out. Subsequently, criteria layers were developed, and the weighting of factors influencing landslides was performed based on expert opinions and the analytic hierarchy Process. Finally, the areas prone to landslide occurrences were validated through field visits.
Results and Discussion
In this method, the factors influencing zoning were identified based on the general conditions of the area, geological characteristics, and climatic conditions, and these specifications were modeled as layers using ArcGIS software. After modeling the layers, they were classified using existing standards from various sources, and ultimately, by integrating and combining the layers with appropriate weighting, the hazard zoning map was created. The weighting in the overlay method is relative. In this study, the Analytic Hierarchy Process (pairwise comparison method) was employed for weighting the influential layers, ensuring that the total weight of the criteria equals 1. In the pairwise comparison method proposed by Professor Saaty, the criteria are compared two by two to determine their relative importance. Subsequently, by placing the criteria in a matrix and using various methods (in this research, the arithmetic mean method was applied), the weights of the criteria were calculated, and the inconsistency ratio was determined. After calculating the relative weights of the influential layers, the overlay of the layers in the ArcGIS environment was performed using the Weighted Sum tool. Based on the conducted studies and recorded earthquakes, it was determined that the most significant factors influencing landslide occurrences in the study area are geological factors, slope, and precipitation. In the study area, most landslides occurred on slopes ranging from 15 to 35 degrees, which significantly impacts rainfall is a significant factor in the occurrence of landslides. Due to rainfall, water has more opportunity to infiltrate these slopes, which reduces friction and/or increases the weight of layers (shale, clay, marl, and loose Quaternary sediments), leading to landslides in the direction of the slope.
Conclusion
Regarding the impact of slope direction on landslide occurrence within the study area, it can be stated that the northern and western slopes are more susceptible to landslides. This is because, considering the general trend of geological layers (east-west) and the direction of sunlight, the northern and western slopes are more shaded than other slopes, resulting in higher moisture retention. This increased moisture facilitates greater water infiltration into the soil, contributing to landslide phenomena. Field visits to the area revealed that the main factors contributing to landslides in the region are the soil type (clay, marl, gypsum, and shale), slope, and rainfall. By creating a landslide hazard zoning map using the overlay index method in ArcGIS and weighting the factors using the Analytical Hierarchy Process (AHP) in the Expert Choice software, it was shown that this method is suitable for landslide zoning in mountainous areas and regions with significant elevation changes and vegetation diversity. The results obtained closely match the recorded landslides. According to the calculations, the area of regions at risk of landslides constitutes 6% (151.68 km²) of the total area (2500 km²) of the study area. The area of villages at risk of landslides accounts for 24%, or 2.04 km², of the total area of the villages (8.53 km²). The investigations revealed that the main power transmission lines and oil pipelines are not at risk. Among the existing mines in this study area, only the zinc mine is at risk, and out of the total industrial factories in this area, two factories one for bread production and one for fruit preservation are located within the landslide hazard zone.
References English and Persian
- Ahmad, R. A., Singh, R. P., & Adris, A. (2017). Seismic hazard assessment of Syria using seismicity, DEM, slope, active faults and GIS. Remote Sensing Applications: Society and Environment, 6, 59-70.
- Arjmandzadeh, R., Sharifi Teshnizi, E., Rastegarnia, A., Golian, M., Jabbari, P., Shamsi, H., & Tavasoli, S. (2020). GIS-based landslide susceptibility mapping in Qazvin province of Iran. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44, 619-647.
- Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31.
- Baharvand, S., Rahnamarad, J., Soori, S., & Saadatkhah, N. (2020). Landslide susceptibility zoning in a catchment of Zagros Mountains using fuzzy logic and GIS. Environmental Earth Sciences, 79, 1-10.
- Bera, A., Mukhopadhyay, B. P., & Das, D. (2019). Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Natural Hazards, 96, 935-959.
- Chen, T., Niu, R., & Jia, X. (2016b). A comparison of information value and logistic regression models in landslide susceptibility mapping by using GIS. Environmental Earth Sciences, 75, 1-16.
- Chen, W., & Li, Y. (2020). GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena, 195, 104777.
- Chen, W., Chai, H., Zhao, Z., Wang, Q., & Hong, H. (2016a). Landslide susceptibility mapping based on GIS and support vector machine models for the Qianyang County, China. Environmental Earth Sciences, 75, 1-13.
- Chen, W., Peng, J., Hong, H., Shahabi, H., Pradhan, B., Liu, J., ... & Duan, Z. (2018). Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of the total environment, 626, 1121-1135.
- Das, S., Sarkar, S., & Kanungo, D. P. (2022). GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya. Environmental Monitoring and Assessment, 194(4), 234.
- Entezari, M., & Varkavani, M. (2022). Landslide hazard zoning using GIS-based methods and radar data (Case study: Fereydunshahr). Journal of Natural Hazards, 11(33), 177-196. ( in Persian)
- Guha-Sapir, D., Hoyois, P., Wallemacq, P., & Below, R. (2017). Annual disaster statistical review 2016. The numbers and trends, 1-91.
- , Z, Khosravi., A. Hosseini, S.A., Rahimi, A.R., & Karbalaei, A.R. (2021). Potential assessment of desert, arid, and Makran coastal areas for solar energy acquisition using fuzzy logic and hierarchical analysis model. Journal of Applied Research in Geographic Sciences, 21(63), 1-18. ( in Persian)
- Haque, U., Da Silva, P. F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., ... & Glass, G. E. (2019). The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment, 682, 673-684.
- Kohno, M., & Higuchi, Y. (2023). Landslide susceptibility assessment in the Japanese archipelago based on a landslide distribution map. ISPRS International Journal of Geo-Information, 12(2), 37.
- Lajmavark, Morteza, and Piriy, Zahra (2023). Landslide hazard zoning using the Analytical Hierarchy Process (AHP) and GIS techniques (Case study: Bagmalek County). Journal of Geography and Natural Hazards, 12(47), 193-215. ( in Persian)
- Moradi, M., Bazyar, M. H., & Mohammadi, Z. (2012). GIS-based landslide susceptibility mapping by AHP method, a case study, Dena City, Iran. Journal of Basic and Applied Scientific Research, 2(7), 6715-6723.
- Moresi, F. V., Maesano, M., Collalti, A., Sidle, R. C., Matteucci, G., & Scarascia Mugnozza, G. (2020). Mapping landslide prediction through a GIS-based model: A case study in a catchment in southern Italy. Geosciences, 10(8), 309.
- Nohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B. T., ... & M. Melesse, A. (2019). Landslide susceptibility mapping using different GIS-based bivariate models. Water, 11(7), 1402.
- Psomiadis, E., Charizopoulos, N., Efthimiou, N., Soulis, K. X., & Charalampopoulos, I. (2020). Earth observation and GIS-based analysis for landslide susceptibility and risk assessment. ISPRS international journal of geo-information, 9(9), 552.
- Ramli, M. F., Yusof, N., Yusoff, M. K., Juahir, H., & Shafri, H. Z. M. (2010). Lineament mapping and its application in landslide hazard assessment: a review. Bulletin of engineering Geology and the Environment, 69, 215-233.
- Roccati, A., Paliaga, G., Luino, F., Faccini, F., & Turconi, L. (2021). GIS-based landslide susceptibility mapping for land use planning and risk assessment. Land, 10(2), 162.
- Sejati, A. E., Karim, A. T. A., & Tanjung, A. (2020). The compatibility of a GIS map of landslide-prone areas in Kendari City Southeast Sulawesi with actual site conditions. In Forum Geografi(Vol. 34, No. 1, pp. 41-50).
- Trigila, A., Iadanza, C., Esposito, C., & Scarascia-Mugnozza, G. (2015). Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology, 249, 119-136.
- Vakhshoori, V., Pourghasemi, H. R., Zare, M., & Blaschke, T. (2019). Landslide susceptibility mapping using GIS-based data mining algorithms. Water, 11(11), 2292.
- Yamani, M., Hassanpour, S., Mostafai, A., & Shadman Roudposhti, M. (2012). Landslide hazard zoning map in the Karun River basin using the AHP model in GIS environment. Geography and Environmental Planning, 23(4 (Issue 48)), 39-56. ( in Persian)
- Yazdadi, E, A. & Ghanavati, E. (2016). Landslide hazard zonation by using AHP (analytical hierarchy process) model in GIS (geographic information system) environment (case study: Kordan watershed). Int J Sci High Technol, 2, 24-39.
- Zazouli, M., Vafaee Nejad, A.R., Al Sheikh., A.A., & Modari, M. (2019). Zoning the probability of landslide occurrence using Shannon entropy models and information value in GIS environment: A case study of the eastern Rudbar region in Alamut, Qazvin Province. Geographic Information Quarterly, 28(112), 123-136. ( in Persian)
- Zou, S., Abuduwaili, J., Duan, W., Ding, J., De Maeyer, P., Van De Voorde, T., & Ma, L. (2021). Attribution of changes in the trend and temporal non-uniformity of extreme precipitation events in Central Asia. Scientific reports, 11(1), 15032.
1) انتظاری، مژگان، وکردوانی، موسی (1401). پهنهبندی خطر زمینلغزش با استفاده از روشهای مبتنی بر GIS و دادههای راداری (مطالعه موردی: فریدون شهر). مجله مخاطرات محیط طبیعی،11(33)، 177-196.
2) حجازی زاده، زهرا، خسروی، آراس، حسینی، سید اسعد، رحیمی، علیرضا، وکربلایی، علیرضا (1400). پتانسیلسنجی مناطق کویری، بیابانی و سواحل مکران به منظور کسب انرژی از خورشید با استفاده از منطق فازی و مدل تحلیل سلسله مراتبی. نشریه تحقیقات کاربردی علوم جغرافیایی، 21(63)، 1-18.
3) ززولی، محمد، فلاح، وفایی نژاد، علیرضا، آل شیخ، علی اصغر، ومدیری، مهدی(1398). پهنهبندی احتمال وقوع زمینلغزش با استفاده از مدلهای آنتروپی شانون و ارزش اطلاعات در محیط GIS مطالعه موردی بخش رودبار الموت شرقی- استان قزوین. فصلنامه اطلاعات جغرافیایی، 28(112)، 123-136.
4) لجم اورک، مرتضی، وپیری، زهرا (1402). پهنهبندی خطر وقوع زمینلغزش با استفاده از مدل تحلیل سلسله مراتبی (AHP) و فن GIS (مطالعه موردی: شهرستان باغملک). مجله جغرافیا و مخاطرات طبیعی، 12(47)، 193-215.
5) یمانی، مجتبی، حسن پور، سیروس، مصطفایی، ابوالفضل، و شادمان رودپشتی، مجید (1391). نقشه پهنهبندی خطر زمینلغزش در حوضه آبخیز کارون بزرگ با استفاده از مدل AHP درمحیط GIS. جغرافیا و برنامه ریزی محیطی، 23(4 (پیاپی 48))، 39-56.
6) Ahmad, R. A., Singh, R. P., & Adris, A. (2017). Seismic hazard assessment of Syria using seismicity, DEM, slope, active faults and GIS. Remote Sensing Applications: Society and Environment, 6, 59-70.
7) Arjmandzadeh, R., Sharifi Teshnizi, E., Rastegarnia, A., Golian, M., Jabbari, P., Shamsi, H., & Tavasoli, S. (2020). GIS-based landslide susceptibility mapping in Qazvin province of Iran. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44, 619-647.
8) Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31.
9) Baharvand, S., Rahnamarad, J., Soori, S., & Saadatkhah, N. (2020). Landslide susceptibility zoning in a catchment of Zagros Mountains using fuzzy logic and GIS. Environmental Earth Sciences, 79, 1-10.
10) Bera, A., Mukhopadhyay, B. P., & Das, D. (2019). Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Natural Hazards, 96, 935-959.
11) Chen, W., Chai, H., Zhao, Z., Wang, Q., & Hong, H. (2016a). Landslide susceptibility mapping based on GIS and support vector machine models for the Qianyang County, China. Environmental Earth Sciences, 75, 1-13.
12) Chen, T., Niu, R., & Jia, X. (2016b). A comparison of information value and logistic regression models in landslide susceptibility mapping by using GIS. Environmental Earth Sciences, 75, 1-16.
13) Chen, W., Peng, J., Hong, H., Shahabi, H., Pradhan, B., Liu, J., ... & Duan, Z. (2018). Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of the total environment, 626, 1121-1135.
14) Chen, W., & Li, Y. (2020). GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena, 195, 104777.
15) Das, S., Sarkar, S., & Kanungo, D. P. (2022). GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya. Environmental Monitoring and Assessment, 194(4), 234.
16) Guha-Sapir, D., Hoyois, P., Wallemacq, P., & Below, R. (2017). Annual disaster statistical review 2016. The numbers and trends, 1-91.
17) Haque, U., Da Silva, P. F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., ... & Glass, G. E. (2019). The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment, 682, 673-684.
18) Kohno, M., & Higuchi, Y. (2023). Landslide susceptibility assessment in the Japanese archipelago based on a landslide distribution map. ISPRS International Journal of Geo-Information, 12(2), 37.
19) Moradi, M., Bazyar, M. H., & Mohammadi, Z. (2012). GIS-based landslide susceptibility mapping by AHP method, a case study, Dena City, Iran. Journal of Basic and Applied Scientific Research, 2(7), 6715-6723.
20) Moresi, F. V., Maesano, M., Collalti, A., Sidle, R. C., Matteucci, G., & Scarascia Mugnozza, G. (2020). Mapping landslide prediction through a GIS-based model: A case study in a catchment in southern Italy. Geosciences, 10(8), 309.
21) Nohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B. T., ... & M. Melesse, A. (2019). Landslide susceptibility mapping using different GIS-based bivariate models. Water, 11(7), 1402.
22) Psomiadis, E., Charizopoulos, N., Efthimiou, N., Soulis, K. X., & Charalampopoulos, I. (2020). Earth observation and GIS-based analysis for landslide susceptibility and risk assessment. ISPRS international journal of geo-information, 9(9), 552.
23) Ramli, M. F., Yusof, N., Yusoff, M. K., Juahir, H., & Shafri, H. Z. M. (2010). Lineament mapping and its application in landslide hazard assessment: a review. Bulletin of engineering Geology and the Environment, 69, 215-233.
24) Roccati, A., Paliaga, G., Luino, F., Faccini, F., & Turconi, L. (2021). GIS-based landslide susceptibility mapping for land use planning and risk assessment. Land, 10(2), 162.
25) Sejati, A. E., Karim, A. T. A., & Tanjung, A. (2020). The compatibility of a GIS map of landslide-prone areas in Kendari City Southeast Sulawesi with actual site conditions. In Forum Geografi (Vol. 34, No. 1, pp. 41-50).
26) Trigila, A., Iadanza, C., Esposito, C., & Scarascia-Mugnozza, G. (2015). Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology, 249, 119-136.
27) Vakhshoori, V., Pourghasemi, H. R., Zare, M., & Blaschke, T. (2019). Landslide susceptibility mapping using GIS-based data mining algorithms. Water, 11(11), 2292.
28) Yazdadi, E, A. & Ghanavati, E. (2016). Landslide hazard zonation by using AHP (analytical hierarchy process) model in GIS (geographic information system) environment (case study: Kordan watershed). Int J Sci High Technol, 2, 24-39.
29) Zou, S., Abuduwaili, J., Duan, W., Ding, J., De Maeyer, P., Van De Voorde, T., & Ma, L. (2021). Attribution of changes in the trend and temporal non-uniformity of extreme precipitation events in Central Asia. Scientific reports, 11(1), 15032.